scispace - formally typeset
Search or ask a question
Author

Sudip Kundu

Bio: Sudip Kundu is an academic researcher from University of Calcutta. The author has contributed to research in topics: Protein folding & Ribosomal protein. The author has an hindex of 14, co-authored 60 publications receiving 810 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The anatomy of the weighted and unweighted networks of hydrophobic, hydrophilic, and charged residues separately for a large number of proteins were studied and it was observed that all-amino-acids networks and Hydrophobic networks bear the signature of hierarchy, whereas the Hydrophilic and charged networks do not have any hierarchical signature.

110 citations

Journal ArticleDOI
TL;DR: Flux distributions show that redox shuttles between the chloroplast, cytosol, and mitochondrion may play a significant role at low light levels, and photorespiration can act to dissipate excess energy at high light levels.
Abstract: We describe the construction and analysis of a genome-scale metabolic model representing a developing leaf cell of rice (Oryza sativa) primarily derived from the annotations in the RiceCyc database. We used flux balance analysis to determine that the model represents a network capable of producing biomass precursors (amino acids, nucleotides, lipid, starch, cellulose, and lignin) in experimentally reported proportions, using carbon dioxide as the sole carbon source. We then repeated the analysis over a range of photon flux values to examine responses in the solutions. The resulting flux distributions show that (1) redox shuttles between the chloroplast, cytosol, and mitochondrion may play a significant role at low light levels, (2) photorespiration can act to dissipate excess energy at high light levels, and (3) the role of mitochondrial metabolism is likely to vary considerably according to the balance between energy demand and availability. It is notable that these organelle interactions, consistent with many experimental observations, arise solely as a result of the need for mass and energy balancing without any explicit assumptions concerning kinetic or other regulatory mechanisms.

101 citations

Journal ArticleDOI
20 Jan 2014-PLOS ONE
TL;DR: This study provides a comprehensive genetic blue print of diverse cellular response(s) during regeneration of zebrafish spinal cord, highlighting the importance of different event specific gene expression that could be better understood and manipulated further to induce successful regeneration in mammals.
Abstract: Background Among the vertebrates, teleost and urodele amphibians are capable of regenerating their central nervous system. We have used zebrafish as a model to study spinal cord injury and regeneration. Relatively little is known about the molecular mechanisms underlying spinal cord regeneration and information based on high density oligonucleotide microarray was not available. We have used a high density microarray to profile the temporal transcriptome dynamics during the entire phenomenon.

76 citations

Journal ArticleDOI
TL;DR: An extensive analysis of protein contact subnetworks based on the London van der Waals interactions of amino acids at different length scales is presented and is able to capture several known properties of protein structure as well as can unravel several new features.
Abstract: The three-dimensional structure of a protein can be described as a graph where nodes represent residues and the strength of non-covalent interactions between them are edges. These protein contact networks can be separated into long and short-range interactions networks depending on the positions of amino acids in primary structure. Long-range interactions play a distinct role in determining the tertiary structure of a protein while short-range interactions could largely contribute to the secondary structure formations. In addition, physico chemical properties and the linear arrangement of amino acids of the primary structure of a protein determines its three dimensional structure. Here, we present an extensive analysis of protein contact subnetworks based on the London van der Waals interactions of amino acids at different length scales. We further subdivided those networks in hydrophobic, hydrophilic and charged residues networks and have tried to correlate their influence in the overall topology and organization of a protein. The largest connected component (LCC) of long (LRN)-, short (SRN)- and all-range (ARN) networks within proteins exhibit a transition behaviour when plotted against different interaction strengths of edges among amino acid nodes. While short-range networks having chain like structures exhibit highly cooperative transition; long- and all-range networks, which are more similar to each other, have non-chain like structures and show less cooperativity. Further, the hydrophobic residues subnetworks in long- and all-range networks have similar transition behaviours with all residues all-range networks, but the hydrophilic and charged residues networks don’t. While the nature of transitions of LCC’s sizes is same in SRNs for thermophiles and mesophiles, there exists a clear difference in LRNs. The presence of larger size of interconnected long-range interactions in thermophiles than mesophiles, even at higher interaction strength between amino acids, give extra stability to the tertiary structure of the thermophiles. All the subnetworks at different length scales (ARNs, LRNs and SRNs) show assortativity mixing property of their participating amino acids. While there exists a significant higher percentage of hydrophobic subclusters over others in ARNs and LRNs; we do not find the assortative mixing behaviour of any the subclusters in SRNs. The clustering coefficient of hydrophobic subclusters in long-range network is the highest among types of subnetworks. There exist highly cliquish hydrophobic nodes followed by charged nodes in LRNs and ARNs; on the other hand, we observe the highest dominance of charged residues cliques in short-range networks. Studies on the perimeter of the cliques also show higher occurrences of hydrophobic and charged residues’ cliques. The simple framework of protein contact networks and their subnetworks based on London van der Waals force is able to capture several known properties of protein structure as well as can unravel several new features. The thermophiles do not only have the higher number of long-range interactions; they also have larger cluster of connected residues at higher interaction strengths among amino acids, than their mesophilic counterparts. It can reestablish the significant role of long-range hydrophobic clusters in protein folding and stabilization; at the same time, it shed light on the higher communication ability of hydrophobic subnetworks over the others. The results give an indication of the controlling role of hydrophobic subclusters in determining protein’s folding rate. The occurrences of higher perimeters of hydrophobic and charged cliques imply the role of charged residues as well as hydrophobic residues in stabilizing the distant part of primary structure of a protein through London van der Waals interaction.

44 citations


Cited by
More filters
Proceedings ArticleDOI
22 Jan 2006
TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Abstract: We will review some of the major results in random graphs and some of the more challenging open problems. We will cover algorithmic and structural questions. We will touch on newer models, including those related to the WWW.

7,116 citations

Journal ArticleDOI
TL;DR: It is proposed that the topological differences between divisions of normal cortex may represent the outcome of different growth processes for multimodal and transmodal networks and that neurodevelopmental abnormalities in schizophrenia specifically impact multi-modal cortical organization.
Abstract: The complex organization of connectivity in the human brain is incompletely understood. Recently, topological measures based on graph theory have provided a new approach to quantify large-scale cortical networks. These methods have been applied to anatomical connectivity data on nonhuman species, and cortical networks have been shown to have small-world topology, associated with high local and global efficiency of information transfer. Anatomical networks derived from cortical thickness measurements have shown the same organizational properties of the healthy human brain, consistent with similar results reported in functional networks derived from resting state functional magnetic resonance imaging (MRI) and magnetoencephalographic data. Here we show, using anatomical networks derived from analysis of inter-regional covariation of gray matter volume in MRI data on 259 healthy volunteers, that classical divisions of cortex (multimodal, unimodal, and transmodal) have some distinct topological attributes. Although all cortical divisions shared nonrandom properties of small-worldness and efficient wiring (short mean Euclidean distance between connected regions), the multimodal network had a hierarchical organization, dominated by frontal hubs with low clustering, whereas the transmodal network was assortative. Moreover, in a sample of 203 people with schizophrenia, multimodal network organization was abnormal, as indicated by reduced hierarchy, the loss of frontal and the emergence of nonfrontal hubs, and increased connection distance. We propose that the topological differences between divisions of normal cortex may represent the outcome of different growth processes for multimodal and transmodal networks and that neurodevelopmental abnormalities in schizophrenia specifically impact multimodal cortical organization.

1,160 citations

01 Jan 2009
TL;DR: In this article, a review outlines the current understanding of miRNA target recognition in animals and discusses the widespread impact of miRNAs on both the expression and evolution of protein-coding genes.
Abstract: MicroRNAs (miRNAs) are endogenous ∼23 nt RNAs that play important gene-regulatory roles in animals and plants by pairing to the mRNAs of protein-coding genes to direct their posttranscriptional repression. This review outlines the current understanding of miRNA target recognition in animals and discusses the widespread impact of miRNAs on both the expression and evolution of protein-coding genes.

646 citations