scispace - formally typeset
Search or ask a question
Author

Sudip Mandal

Other affiliations: University of Calcutta
Bio: Sudip Mandal is an academic researcher from Jalpaiguri Government Engineering College. The author has contributed to research in topics: Gene regulatory network & Search algorithm. The author has an hindex of 7, co-authored 25 publications receiving 172 citations. Previous affiliations of Sudip Mandal include University of Calcutta.

Papers
More filters
Journal ArticleDOI
TL;DR: A new metaheuristic namely Elephant Swarm Water Search Algorithm (ESWSA) to infer Gene Regulatory Network (GRN) is proposed, mainly based on the water search strategy of intelligent and social elephants during drought, utilizing the different types of communication techniques.
Abstract: Correct inference of genetic regulations inside a cell from the biological database like time series microarray data is one of the greatest challenges in post genomic era for biologists and researchers. Recurrent Neural Network (RNN) is one of the most popular and simple approach to model the dynamics as well as to infer correct dependencies among genes. Inspired by the behavior of social elephants, we propose a new metaheuristic namely Elephant Swarm Water Search Algorithm (ESWSA) to infer Gene Regulatory Network (GRN). This algorithm is mainly based on the water search strategy of intelligent and social elephants during drought, utilizing the different types of communication techniques. Initially, the algorithm is tested against benchmark small and medium scale artificial genetic networks without and with presence of different noise levels and the efficiency was observed in term of parametric error, minimum fitness value, execution time, accuracy of prediction of true regulation, etc. Next, the proposed algorithm is tested against the real time gene expression data of Escherichia Coli SOS Network and results were also compared with others state of the art optimization methods. The experimental results suggest that ESWSA is very efficient for GRN inference problem and performs better than other methods in many ways.

14 citations

Journal ArticleDOI
TL;DR: The results obtained show that the proposed methodology is capable of increasing the inference of correct regulations and decreasing false regulations to a high degree and the proposed method sacrifices computational time complexity in both cases due to the hybrid optimization process.
Abstract: The accurate prediction of genetic networks using computational tools is one of the greatest challenges in the postgenomic era. Recurrent Neural Network is one of the most popular but simple approaches to model the network dynamics from time-series microarray data. To date, it has been successfully applied to computationally derive small-scale artificial and real-world genetic networks with high accuracy. However, they underperformed for large-scale genetic networks. Here, a new methodology has been proposed where a hybrid Cuckoo Search-Flower Pollination Algorithm has been implemented with Recurrent Neural Network. Cuckoo Search is used to search the best combination of regulators. Moreover, Flower Pollination Algorithm is applied to optimize the model parameters of the Recurrent Neural Network formalism. Initially, the proposed method is tested on a benchmark large-scale artificial network for both noiseless and noisy data. The results obtained show that the proposed methodology is capable of increasing the inference of correct regulations and decreasing false regulations to a high degree. Secondly, the proposed methodology has been validated against the real-world dataset of the DNA SOS repair network of Escherichia coli. However, the proposed method sacrifices computational time complexity in both cases due to the hybrid optimization process.

12 citations

Journal ArticleDOI
TL;DR: Results show the efficiency of MESWSA algorithm for I-V characteristics of solar modules at different operating conditions can serve as a new alternative metaheuristic for parameter estimation of solar cells/PV modules.
Abstract: A highly accurate modeling of photovoltaic (PV) systems from experimental data is a very important task for electronic engineers for efficient design of PV systems. Suitable optimization techniques...

12 citations

Journal ArticleDOI
10 Jan 2017
TL;DR: Bat Algorithm (BA) is applied to optimize the model parameters of RNN model of Gene Regulatory Network (GRN) and the results prove that it can able to identify the maximum number of true positive regulation but also include some false positive regulations.
Abstract: Correct inference of genetic regulations inside a cell is one of the greatest challenges in post genomic era for the biologist and researchers. Several intelligent techniques and models were already proposed to identify the regulatory relations among genes from the biological database like time series microarray data. Recurrent Neural Network (RNN) is one of the most popular and simple approach to model the dynamics as well as to infer correct dependencies among genes. In this paper, Bat Algorithm (BA) is applied to optimize the model parameters of RNN model of Gene Regulatory Network (GRN). Initially the proposed method is tested against small artificial network without any noise and the efficiency is observed in term of number of iteration, number of population and BA optimization parameters. The model is also validated in presence of different level of random noise for the small artificial network and that proved its ability to infer the correct inferences in presence of noise like real world dataset. In the next phase of this research, BA based RNN is applied to real world benchmark time series microarray dataset of E. coli. The results prove that it can able to identify the maximum number of true positive regulation but also include some false positive regulations. Therefore, BA is very suitable for identifying biological plausible GRN with the help RNN model.

8 citations

Journal ArticleDOI
01 Aug 2019
TL;DR: In this work, three different improved versions of original elephant swarm water search algorithm (ESWSA) is proposed and tested against the present problem of liquid flow control and ESWSA is found to be best efficient algorithm with respect to success rate and computational time.
Abstract: In process industry, liquid flow rate is one of the important variables which need to be controlled to obtain the better quality and reduce the cost of production. The liquid flow rate depends upon number of parameters like sensor output voltage, pipe diameter etc. Conventional approach involves manual tuning of these variables so that optimal flow rate can be achieved which is time consuming and costly. However, estimation of an accurate computational model for liquid flow control process can serve as alternative approach. It is nothing but a non-linear optimization problem. In this work, three different improved versions of original elephant swarm water search algorithm (ESWSA) is proposed and tested against the present problem of liquid flow control. Equations for response surface methodology and analysis of variance are being used as non-linear models and these models are optimized using those newly proposed optimization techniques. The statistical analysis of the obtained results shows that the proposed MESWSA has highest overall efficiency (i.e. 45%) and it outperformed the others techniques for the most of the cases of modeling for liquid flow control process. But one of the major disadvantages of MESWSA is its slow convergence speed. On the other hand, ESWSA is better for finding the best fitness and LESWSA has better stability in output. Moreover, LMESWSA is found to be best efficient algorithm with respect to success rate and computational time. However, all algorithms and models can predict the liquid flow rate with satisfactory accuracy.

7 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

01 Jan 2002

9,314 citations

Journal ArticleDOI
TL;DR: This research embeds a particle swarm optimization as feature selection into three renowned classifiers, namely, naive Bayes, K-nearest neighbor, and fast decision tree learner, with the objective of increasing the accuracy level of the prediction model.
Abstract: Women who have recovered from breast cancer (BC) always fear its recurrence. The fact that they have endured the painstaking treatment makes recurrence their greatest fear. However, with current advancements in technology, early recurrence prediction can help patients receive treatment earlier. The availability of extensive data and advanced methods make accurate and fast prediction possible. This research aims to compare the accuracy of a few existing data mining algorithms in predicting BC recurrence. It embeds a particle swarm optimization as feature selection into three renowned classifiers, namely, naive Bayes, K-nearest neighbor, and fast decision tree learner, with the objective of increasing the accuracy level of the prediction model.

130 citations