scispace - formally typeset
Search or ask a question
Author

Sue Katz

Bio: Sue Katz is an academic researcher. The author has contributed to research in topics: Polyunsaturated fatty acid & Free fatty acid receptor. The author has an hindex of 1, co-authored 1 publications receiving 133 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A cDNA library was constructed from developing seeds during the period of maximum oil deposition and a CPA-FA synthase was identified from S. foetida, and the pathway in higher plants that produce carbocyclic fatty acids was defined as by transfer of C1 units, most likely from S-adenosylmethionine to oleate.
Abstract: Fatty acids containing three-member carbocyclic rings are found in bacteria and plants. Bacteria synthesize cyclopropane fatty acids (CPA-FAs) only by the addition of a methylene group from S-adenosylmethionine to the cis-double bond of monoenoic phospholipid-bound fatty acids. In plants CPA-FAs are usually minor components with cyclopropene fatty acids (CPE-FAs) more abundant. Sterculia foetida seed oil contains 65–78% CPE-FAs, principally sterculic acid. To address carbocyclic fatty acid synthesis in plants, a cDNA library was constructed from developing seeds during the period of maximum oil deposition. About 0.4% of 5,300 expressed sequence tags were derived from one gene, which shared similarities to the bacterial CPA-FA synthase. However, the predicted protein is twice as large as the bacterial homolog and represents a fusion of an FAD-containing oxidase at the N terminus and a methyltransferase at the C terminus. Functional analysis of the isolated full-length cDNA was conducted in tobacco suspension cells where its expression resulted in the accumulation of up to 6.2% dihydrosterculate of total fatty acids. In addition, the dihydrosterculate was specifically labeled by [methyl-14C]methionine and by [14C]oleic acid in the transgenic tobacco cells. In in vitro assay of S. foetida seed extracts, S-adenosylmethionine served as a methylene donor for the synthesis of dihydrosterculate from oleate. Dihydrosterculate accumulated largely in phosphatidylcholine in both systems. Together, a CPA-FA synthase was identified from S. foetida, and the pathway in higher plants that produce carbocyclic fatty acids was defined as by transfer of C1 units, most likely from S-adenosylmethionine to oleate.

144 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The results indicate massively parallel pyrosequencing provides novel information helpful to improve the annotation of the Arabidopsis genome and the unbiased representation of transcripts will be particularly useful for gene discovery and gene expression analysis of nonmodel plants with less complete genomic information.
Abstract: Massively parallel sequencing of DNA by pyrosequencing technology offers much higher throughput and lower cost than conventional Sanger sequencing. Although extensively used already for sequencing of genomes, relatively few applications of massively parallel pyrosequencing to transcriptome analysis have been reported. To test the ability of this technology to provide unbiased representation of transcripts, we analyzed mRNA from Arabidopsis (Arabidopsis thaliana) seedlings. Two sequencing runs yielded 541,852 expressed sequence tags (ESTs) after quality control. Mapping of the ESTs to the Arabidopsis genome and to The Arabidopsis Information Resource 7.0 cDNA models indicated: (1) massively parallel pyrosequencing detected transcription of 17,449 gene loci providing very deep coverage of the transcriptome. Performing a second sequencing run only increased the number of genes identified by 10%, but increased the overall sequence coverage by 50%. (2) Mapping of the ESTs to their predicted full-length transcripts indicated that all regions of the transcript were well represented regardless of transcript length or expression level. Furthermore, short, medium, and long transcripts were equally represented. (3) Over 16,000 of the ESTs that mapped to the genome were not represented in the existing dbEST database. In some cases, the ESTs provide the first experimental evidence for transcripts derived from predicted genes, and, for at least 60 locations in the genome, pyrosequencing identified likely protein-coding sequences that are not now annotated as genes. Together, the results indicate massively parallel pyrosequencing provides novel information helpful to improve the annotation of the Arabidopsis genome. Furthermore, the unbiased representation of transcripts will be particularly useful for gene discovery and gene expression analysis of nonmodel plants with less complete genomic information.

363 citations

Journal ArticleDOI
TL;DR: This review aims to summarize the present knowledge of catalytic roles of AdoMet in plant metabolism.

337 citations

Journal ArticleDOI
TL;DR: An outlook on the future of bioorthogonal chemistry is presented and currently emerging opportunities and speculate on how bioorthogsonal reactions might be applied in research and translational settings are discussed.
Abstract: Bioorthogonal reactions have found widespread use in applications ranging from glycan engineering to in vivo imaging. Researchers have devised numerous reactions that can be predictably performed in a biological setting. Depending on the requirements of the intended application, one or more reactions from the available toolkit can be readily deployed. As an increasing number of investigators explore and apply chemical reactions in living systems, it is clear that there are a myriad of ways in which the field may advance. This article presents an outlook on the future of bioorthogonal chemistry. I discuss currently emerging opportunities and speculate on how bioorthogonal reactions might be applied in research and translational settings. I also outline hurdles that must be cleared if progress toward these goals is to be made. Given the incredible past successes of bioorthogonal chemistry and the rapid pace of innovations in the field, the future is undoubtedly very bright.

294 citations

Journal ArticleDOI
TL;DR: A new chemical reporter-cyclopropene-that can be used to target biomolecules in vitro and in live cells is described that will facilitate efforts to tag diverse collections of biomolecule in vivo.
Abstract: Chemical reporters are unique functional groups that can be used to label biomolecules in living systems. Only a handful of broadly applicable reporters have been identified to date, owing to the rigorous demands placed on these functional groups in biological settings. We describe here a new chemical reporter-cyclopropene-that can be used to target biomolecules in vitro and in live cells. A variety of substituted cyclopropene scaffolds were synthesized and found to be stable in aqueous solution and in the presence of biological nucleophiles. Furthermore, some of the cyclopropene units were metabolically introduced into cell surface glycans and subsequently detected with covalent probes. The small size and selective reactivity of cyclopropenes will facilitate efforts to tag diverse collections of biomolecules in vivo.

277 citations

Journal ArticleDOI
TL;DR: The current state of knowledge of the biochemistry and molecular genetics of polyacetylenic secondary metabolic pathways will be presented together with an up-to-date survey of new terrestrial and marine natural products, their known biological activities, and a discussion of their likely metabolic origins.

271 citations