scispace - formally typeset
Search or ask a question
Author

Suehiro Iwata

Bio: Suehiro Iwata is an academic researcher from Toyota. The author has contributed to research in topics: Ab initio & Molecular orbital. The author has an hindex of 43, co-authored 231 publications receiving 6087 citations. Previous affiliations of Suehiro Iwata include Ochanomizu University & Hiroshima University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the photodissociation spectra of Mg+H2On (n=1-5) cluster ions were examined in the wavelength region from 720 to 250 nm by monitoring the total yield of the fragment ions.
Abstract: Photodissociation spectra of Mg+(H2O)n (n=1–5) cluster ions were examined in the wavelength region from 720 to 250 nm by monitoring the total yield of the fragment ions. The absorption bands exhibit redshifts as large as 17 000 cm−1 with respect to the 2P–2S resonance line of the free Mg+ ion and were explained by the shift of this transition as a result of hydration. The spectra also exhibit clear evolution of solvation shell with the first shell closing at n=3, being consistent with the theoretical prediction. The mass spectra of the fragment ions show the existence of two dissociation processes: the evaporation of water molecules and the photoinduced intracluster reaction to produce the hydrated MgOH+ ion, MgOH+(H2O)m. The branching fraction between the two processes depends strongly on the solvent number n and also on the photolysis wavelength. The energetics and the dynamics of the dissociation processes were discussed in conjunction with the results of ab initio calculations.

154 citations

Journal ArticleDOI
TL;DR: In this article, an extended Hartree-Fock method for excited states is proposed, starting from the ground state Hartree Fock molecular orbitals and allowing mixing within occupied and vacant subspaces, respectively, to minimize the energy of a single configuration excited state.

133 citations

Journal ArticleDOI
TL;DR: In this paper, the potential energy curves for the symmetrical simultaneous movement of two bridging protons are studied for all of the ground states, the lowest singlet and triplet nπ* states, and the lowest triplet π-π* state of the formic acid monomer and dimer with the ab initio molecular orbital theory.
Abstract: The ground state, the lowest singlet and triplet n-π* states, and the lowest triplet π-π* state of the formic acid monomer and dimer are studied with the ab initio molecular orbital theory. The two-configuration electron-hole potential method is used for calculations of excited states of dimers. The potential energy curves for the symmetrical simultaneous movement of two bridging protons are studied for all of the states. The barrier of the proton transfer in the ground state is found to be the smallest of the states studied. The association energy is analyzed in terms of various components.

130 citations


Cited by
More filters
Book
01 Sep 2001
TL;DR: A Chemist's Guide to Density Functional Theory should be an invaluable source of insight and knowledge for many chemists using DFT approaches to solve chemical problems.
Abstract: "Chemists familiar with conventional quantum mechanics will applaud and benefit greatly from this particularly instructive, thorough and clearly written exposition of density functional theory: its basis, concepts, terms, implementation, and performance in diverse applications. Users of DFT for structure, energy, and molecular property computations, as well as reaction mechanism studies, are guided to the optimum choices of the most effective methods. Well done!" Paul von RaguE Schleyer "A conspicuous hole in the computational chemist's library is nicely filled by this book, which provides a wide-ranging and pragmatic view of the subject.[...It] should justifiably become the favorite text on the subject for practioneers who aim to use DFT to solve chemical problems." J. F. Stanton, J. Am. Chem. Soc. "The authors' aim is to guide the chemist through basic theoretical and related technical aspects of DFT at an easy-to-understand theoretical level. They succeed admirably." P. C. H. Mitchell, Appl. Organomet. Chem. "The authors have done an excellent service to the chemical community. [...] A Chemist's Guide to Density Functional Theory is exactly what the title suggests. It should be an invaluable source of insight and knowledge for many chemists using DFT approaches to solve chemical problems." M. Kaupp, Angew. Chem.

3,550 citations

Journal ArticleDOI
TL;DR: The Rehybridization of the Acceptor (RICT) and Planarization ofThe Molecule (PICT) III is presented, with a comparison of the effects on yield and radiationless deactivation processes.
Abstract: 6. Rehybridization of the Acceptor (RICT) 3908 7. Planarization of the Molecule (PICT) 3909 III. Fluorescence Spectroscopy 3909 A. Solvent Effects and the Model Compounds 3909 1. Solvent Effects on the Spectra 3909 2. Steric Effects and Model Compounds 3911 3. Bandwidths 3913 4. Isoemissive Points 3914 B. Dipole Moments 3915 C. Radiative Rates and Transition Moments 3916 1. Quantum Yields and Radiationless Deactivation Processes 3916

2,924 citations

Book
17 Jul 1991
TL;DR: In this article, the van der Waals Radii cut-off criterion is used to define the strong and weak hydrogen-bond configurations, as well as the relationship between two-center and three-center hydrogen bonds.
Abstract: IA Basic Concepts.- 1 The Importance of Hydrogen Bonds.- 1.1 Historical Perspective.- 1.2 The Importance of Hydrogen Bonds in Biological Structure and Function.- 1.3 The Role of the Water Molecules.- 1.4 Significance of Small Molecule Crystal Structural Studies.- 1.5 The Structural Approach.- 2 Definitions and Concepts.- 2.1 Definition of the Hydrogen Bond - Strong and Weak Bonds.- 2.2 Hydrogen-Bond Configurations: Two- and Three-Center Hydrogen Bonds Bifurcated and Tandem Bonds.- 2.3 Hydrogen Bonds Are Very Different from Covalent Bonds.- 2.4 The van der Waals Radii Cut-Off Criterion Is Not Useful.- 2.5 The Concept of the Hydrogen-Bond Structure.- 2.6 The Importance of ? and ? Cooperativity.- 2.7 Homo-, Anti- and Heterodromic Patterns.- 2.8 Hydrogen Bond Flip-Flop Disorder: Conformational and Configurational.- 2.9 Proton-Deficient Hydrogen Bonds.- 2.10 The Excluded Region.- 2.11 The Hydrophobic Effect.- 3 Experimental Studies of Hydrogen Bonding.- 3.1 Infrared Spectroscopy and Gas Electron Diffraction.- 3.2 X-Ray and Neutron Crystal Structure Analysis.- 3.3 Treatment of Hydrogen Atoms in Neutron Diffraction Studies.- 3.4 Charge Density and Hydrogen-Bond Energies.- 3.5 Neutron Powder Diffraction.- 3.6 Solid State NMR Spectroscopy.- 4 Theoretical Calculations of Hydrogen-Bond Geometries.- 4.1 Calculating Hydrogen-Bond Geometries.- 4.2 Ab-Initio Molecular Orbital Methods.- 4.3 Application to Hydrogen-Bonded Complexes.- 4.4 Semi-Empirical Molecular Orbital Methods.- 4.5 Empirical Force Field or Molecular Mechanics Methods.- 5 Effect of Hydrogen Bonding on Molecular Structure.- IB Hydrogen-Bond Geometry.- 6 The Importance of Small Molecule Structural Studies.- 6.1 Problems Associated with the Hydrogen-Bond Geometry.- 6.2 The Hydrogen Bond Can Be Described Statistically.- 6.3 The Problems of Measuring Hydrogen-Bond Lengths and Angles in Small Molecule Crystal Structures.- 7 Metrical Aspects of Two-Center Hydrogen Bonds.- 7.1 The Metrical Properties of O-H *** O Hydrogen Bonds.- 7.1.1 Very Strong and Strong OH *** O Hydrogen Bonds Occur with Oxyanions, Acid Salts, Acid Hydrates, and Carboxylic Acids.- 7.1.2 OH *** O Hydrogen Bonds in the Ices and High Hydrates.- 7.1.3 Carbohydrates Provide the Best Data for OH ... O Hydrogen Bonds: Evidence for the Cooperative Effect.- 7.2 N-H *** O Hydrogen Bonds.- 7.3 N-H *** N Hydrogen Bonds.- 7.4 O-H *** N Hydrogen Bonds.- 7.5 Sequences in Lengths of Two-Center Hydrogen Bonds.- 7.6 H/D Isotope Effect.- 8 Metrical Aspects of Three- and Four-Center Hydrogen Bonds.- 8.1 Three-Center Hydrogen Bonds.- 8.2 Four-Center Hydrogen Bonds.- 9 Intramolecular Hydrogen Bonds.- 10 Weak Hydrogen-Bonding Interactions Formed by C-H Groups as Donors and Aromatic Rings as Acceptors.- 11 Halides and Halogen Atoms as Hydrogen-Bond Acceptors.- 12 Hydrogen-Bond Acceptor Geometries.- II Hydrogen Bonding in Small Biological Molecules.- 13 Hydrogen Bonding in Carbohydrates.- 13.1 Sugar Alcohols (Alditols) as Model Cooperative Hydrogen-Bonded Structures.- 13.2 Influence of Hydrogen Bonding on Configuration and Conformation in Cyclic Monosaccharides.- 13.3 Rules to Describe Hydrogen-Bonding Patterns in Monosaccharides.- 13.4 The Water Molecules Link Hydrogen-Bond Chains into Nets in the Hydrated Monosaccharide Crystal Structures.- 13.5 The Disaccharide Crystal Structures Provide an Important Source of Data About Hydrogen-Bonding Patterns in Polysaccharides.- 13.6 Hydrogen Bonding in the Tri- and Tetrasaccharides Is More Complex and Less Well Defined.- 13.7 The Hydrogen Bonding in Polysaccharide Fiber Structures Is Poorly Defined.- 14 Hydrogen Bonding in Amino Acids and Peptides: Predominance of Zwitterions.- 15 Purines and Pyrimidines.- 15.1 Bases Are Planar and Each Contains Several Different Hydrogen-Bonding Donor and Acceptor Groups.- 15.2 Many Tautomeric Forms Are Feasible But Not Observed.- 15.3 ?-Bond Cooperativity Enhances Hydrogen-Bonding Forces.- 15.4 General, Non-Base-Pairing Hydrogen Bonds.- 16 Base Pairing in the Purine and Pyrimidine Crystal Structures.- 16.1 Base-Pair Configurations with Purine and Pyrimidine Homo-Association.- 16.2 Base-Pair Configurations with Purine-Pyrimidine Hetero-Association: the Watson-Crick Base-Pairs.- 16.3 Base Pairs Can Combine to Form Triplets and Quadruplets.- 17 Hydrogen Bonding in the Crystal Structures of the Nucleosides and Nucleotides.- 17.1 Conformational and Hydrogen-Bonding Characteristics of the Nucleosides and Nucleotides.- 17.2 A Selection of Cyclic Hydrogen-Bonding Patterns Formed in Nucleoside and Nucleotide Crystal Structures.- 17.3 General Hydrogen-Bonding Patterns in Nucleoside and Nucleotide Crystal Structures.- III Hydrogen Bonding in Biological Macromolecules.- 18 O-H *** O Hydrogen Bonding in Crystal Structures of Cyclic and Linear Oligoamyloses: Cyclodextrins, Maltotriose, and Maltohexaose.- 18.1 The Cyclodextrins and Their Inclusion Complexes.- 18.2 Crystal Packing Patterns of Cyclodextrins Are Determined by Hydrogen Bonding.- 18.3 Cyclodextrins as Model Compounds to Study Hydrogen-Bonding Networks.- 18.4 Cooperative, Homodromic, and Antidromic Hydrogen-Bonding Patterns in the ?-Cyclodextrin Hydrates.- 18.5 Homodromic and Antidromic O-H *** O Hydrogen-Bonding Systems Analyzed Theoretically.- 18.6 Intramolecular Hydrogen Bonds in the ?-Cyclodextrin Molecule are Variable - the Induced-Fit Hypothesis.- 18.7 Flip-Flop Hydrogen Bonds in ?-Cyclodextrin * 11 H2O.- 18.8 From Flip-Flop Disorder to Ordered Homodromic Arrangements at Low lbmperature: The Importance of the Cooperative Effect.- 18.9 Maltohexaose Polyiodide and Maltotriose - Double and Single Left-Handed Helices With and Without Intramolecular O(2) *** O(3?) Hydrogen Bonds.- 19 Hydrogen Bonding in Proteins.- 19.1 Geometry of Secondary-Structure Elements: Helix, Pleated Sheet, and Turn.- 19.2 Hydrogen-Bond Analysis in Protein Crystal Structures.- 19.3 Hydrogen-Bonding Patterns in the Secondary Structure Elements.- 19.4 Hydrogen-Bonding Patterns Involving Side-Chains.- 19.5 Internal Water Molecules as Integral Part of Protein Structures.- 19.6 Metrical Analysis of Hydrogen Bonds in Proteins.- 19.7 Nonsecondary-Structure Hydrogen-Bond Geometry Between Main-Chains, Side-Chains and Water Molecules.- 19.8 Three-Center (Bifurcated) Bonds in Proteins.- 19.9 Neutron Diffraction Studies on Proteins Give Insight into Local Hydrogen-Bonding Flexibility.- 19.10 Site-Directed Mutagenesis Gives New Insight into Protein Thermal Stability and Strength of Hydrogen Bonds.- 20 The Role of Hydrogen Bonding in the Structure and Function of the Nucleic Acids.- 20.1 Hydrogen Bonding in Nucleic Acids is Essential for Life.- 20.2 The Structure of DNA and RNA Double Helices is Determined by Watson-Crick Base-Pair Geometry.- 20.3 Systematic and Accidental Base-Pair Mismatches: "Wobbling" and Mutations.- 20.4 Noncomplementary Base Pairs Have a Structural Role in tRNA.- 20.5 Homopolynucleotide Complexes Are Stabilized by a Variety of Base-Base Hydrogen Bonds - Three-Center (Bifurcated) Hydrogen Bonds in A-Tracts.- 20.6 Specific Protein-Nucleic Acid Recognition Involves Hydrogen Bonding.- IV Hydrogen Bonding by the Water Molecule.- 21 Hydrogen-Bonding Patterns in Water, Ices, the Hydrate Inclusion Compounds, and the Hydrate Layer Structures.- 21.1 Liquid Water and the Ices.- 21.2 The Hydrate Inclusion Compounds.- 21.3 Hydrate Layer Structures.- 22 Hydrates of Small Biological Molecules: Carbohydrates, Amino Acids, Peptides, Purines, Pyrimidines, Nucleosides and Nucleotides.- 23 Hydration of Proteins.- 23.1 Characterization of "Bound Water" at Protein Surfaces - the First Hydration Shell.- 23.2 Sites of Hydration in Proteins.- 23.3 Metrics of Water Hydrogen Bonding to Proteins.- 23.4 Ordered Water Molecules at Protein Surfaces - Clusters and Pentagons.- 24 Hydration of Nucleic Acids.- 24.1 Two Water Layers Around the DNA Double Helix.- 24.2 Crystallographically Determined Hydration Sites in A-, B-, Z-DNA. A Statistical Analysis.- 24.3 Hydration Motifs in Double Helical Nucleic Acids.- 24.3.1 Sequence-Independent Motifs.- 24.3.2 Sequence-Dependent Motifs.- 24.4 DNA Hydration and Structural Transitions Are Correlated: Some Hypotheses.- 25 The Role of Three-Center Hydrogen Bonds in the Dynamics of Hydration and of Structure Transition.- References.- Refcodes.

2,739 citations

Journal ArticleDOI
TL;DR: In this paper, the Hartree-Fock matrix of the supermolecule is used as the basis for the construction of the Fock matrix, and certain blocks of this matrix are set to zero subject to specify boundary conditions of the molecular orbitals, and the resultant matrix is diagonalized iteratively to obtain the desired energy components.
Abstract: A new method is proposed for the analysis of components of molecular interaction energy within the Hartree-Fock approximation. The Hartree-Fock molecular orbitals of the isolated molecules are used as the basis for the construction of Fock matrix of the supermolecule. Then certain blocks of this matrix are set to zero subject to specify boundary conditions of the supermolecule molecular orbitals, and the resultant matrix is diagonalized iteratively to obtain the desired energy components. This method can be considered as an extension of our previous method, but has an advantage in the explicit definition of the charge transfer energy, placing it on an equal footing with the exchange and polarization terms. The new method is compared with existing perturbation methods, and is also applied to the energy and electron density decomposition of (H2O)2.

1,760 citations

01 Feb 1995
TL;DR: In this paper, the unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio using DFT, MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set.
Abstract: : The unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio. Harmonic force fields are obtained using Density Functional Theory (DFT), MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set. DFT calculations use the Local Spin Density Approximation (LSDA), BLYP, and Becke3LYP (B3LYP) density functionals. Mid-IR spectra predicted using LSDA, BLYP, and B3LYP force fields are of significantly different quality, the B3LYP force field yielding spectra in clearly superior, and overall excellent, agreement with experiment. The MP2 force field yields spectra in slightly worse agreement with experiment than the B3LYP force field. The SCF force field yields spectra in poor agreement with experiment.The basis set dependence of B3LYP force fields is also explored: the 6-31G* and TZ2P basis sets give very similar results while the 3-21G basis set yields spectra in substantially worse agreements with experiment. jg

1,652 citations