scispace - formally typeset
Search or ask a question
Author

Suh

Bio: Suh is an academic researcher. The author has contributed to research in topics: Message authentication code & Key generation. The author has an hindex of 1, co-authored 1 publications receiving 1721 citations.

Papers
More filters
Proceedings Article
01 Jan 2007

1,944 citations


Cited by
More filters
Journal ArticleDOI
30 May 2014
TL;DR: This paper motivates the use of PUFs versus conventional secure nonvolatile memories, defines the two primary PUF types, and describes strong and weak PUF implementations and their use for low-cost authentication and key generation applications.
Abstract: This paper describes the use of physical unclonable functions (PUFs) in low-cost authentication and key generation applications. First, it motivates the use of PUFs versus conventional secure nonvolatile memories and defines the two primary PUF types: “strong PUFs” and “weak PUFs.” It describes strong PUF implementations and their use for low-cost authentication. After this description, the paper covers both attacks and protocols to address errors. Next, the paper covers weak PUF implementations and their use in key generation applications. It covers error-correction schemes such as pattern matching and index-based coding. Finally, this paper reviews several emerging concepts in PUF technologies such as public model PUFs and new PUF implementation technologies.

977 citations

Proceedings ArticleDOI
10 Mar 2008
TL;DR: A novel comprehensive technique to end piracy of integrated circuits (EPIC), which requires that every chip be activated with an external key, which can only be generated by the holder of IP rights, and cannot be duplicated.
Abstract: As semiconductor manufacturing requires greater capital investments, the use of contract foundries has grown dramatically, increasing exposure to mask theft and unauthorized excess production. While only recently studied, IC piracy has now become a major challenge for the electronics and defense industries [6].We propose a novel comprehensive technique to end piracy of integrated circuits (EPIC). It requires that every chip be activated with an external key, which can only be generated by the holder of IP rights, and cannot be duplicated. EPIC is based on (i) automatically-generated chip IDs, (ii) a novel combinational locking algorithm, and (iii) innovative use of public-key cryptography. Our evaluation suggests that the overhead of EPIC on circuit delay and power is negligible, and the standard flows for verification and test do not require change. In fact, major required components have already been integrated into several chips in production. We also use formal methods to evaluate combinational locking and computational attacks. A comprehensive protocol analysis concludes that EPIC is surprisingly resistant to various piracy attempts.

639 citations

Proceedings Article
01 Jan 2008

559 citations

Book ChapterDOI
01 Jan 2010
TL;DR: The practical relevance of PUFs for security applications was recognized from the start, with a special focus on the promising properties of physical unclonability and tamper evidence.
Abstract: The idea of using intrinsic random physical features to identify objects, systems, and people is not new. Fingerprint identification of humans dates at least back to the nineteenth century [21] and led to the field of biometrics. In the 1980s and 1990s of the twentieth century, random patterns in paper and optical tokens were used for unique identification of currency notes and strategic arms [2, 8, 53]. A formalization of this concept was introduced in the very beginning of the twenty-first century, first as physical one-way functions [41, 42], physical random functions [13], and finally as physical(ly) unclonable functions or PUFs.1 In the years following this introduction, an increasing number of new types of PUFs were proposed, with a tendency toward more integrated constructions. The practical relevance of PUFs for security applications was recognized from the start, with a special focus on the promising properties of physical unclonability and tamper evidence.

488 citations

Journal ArticleDOI
15 Jul 2014
TL;DR: This tutorial will provide a review of some of the existing counterfeit detection and avoidance methods, and discuss the challenges ahead for implementing these methods, as well as the development of new Detection and avoidance mechanisms.
Abstract: As the electronic component supply chain grows more complex due to globalization, with parts coming from a diverse set of suppliers, counterfeit electronics have become a major challenge that calls for immediate solutions. Currently, there are a few standards and programs available that address the testing for such counterfeit parts. However, not enough research has yet addressed the detection and avoidance of all counterfeit partsVrecycled, remarked, overproduced, cloned, out-of-spec/defective, and forged documentationVcurrently infiltrating the electronic component supply chain. Even if they work initially, all these parts may have reduced lifetime and pose reliability risks. In this tutorial, we will provide a review of some of the existing counterfeit detection and avoidance methods. We will also discuss the challenges ahead for im- plementing these methods, as well as the development of new detection and avoidance mechanisms.

424 citations