scispace - formally typeset
Search or ask a question

Showing papers by "Suhas V. Patankar published in 1998"


Proceedings ArticleDOI
TL;DR: In this article, a numerical study has been conducted to investigate the effects of surface curvature on cooling effectiveness using three-dimensional film cooling geometries that included the main flow, injection hole, and supply plenum regions.
Abstract: A numerical study has been conducted to investigate the effects of surface curvature on cooling effectiveness using three-dimensional film cooling geometries that included the mainflow, injection hole, and supply plenum regions. Three surfaces were considered in this study, namely, convex, concave, and flat surfaces. The fully elliptic, three-dimensional Navier-Stokes equations were solved over a body-fitted grid. The effects of streamline curvature were taken into account by using algebraic relations for the turbulent viscosity and the turbulent Prandtl number in a modified k-e turbulence model. Computations were performed for blowing ratios of 0.5, 1.0, and 1.5 at a density ratio of 2.0. The computed and experimental cooling effectiveness results were compared. For the most part, the cooling effectiveness was predicted quite well. A comparison of the cooling performances over the three surfaces reveals that the effect of streamline curvature on cooling effectiveness is very significant. For the low blowing ratios considered, the convex surface resulted in a higher cooling effectiveness than both the flat and concave surfaces. The flow structures over the three surfaces also exhibited important differences. On the concave surface, the flow involved a stronger vorticity and greater mixing of the coolant jet with the mainstream gases. On the convex surface, the counter-rotating vortices were suppressed and the coolant jet pressed to the surface by a strong cross-stream pressure gradient.Copyright © 1998 by ASME

30 citations


Proceedings ArticleDOI
TL;DR: In this article, the effects of several film cooling parameters have been investigated, including the blowing ratio, injection angle, hole length, hole spacing, and hole staggering, and the results showed that the optimum blowing ratios for curved surfaces are higher than those for flat surfaces, and a reduction of hole spacing from 3D to 2D resulted in a very significant increase in adiabatic effectiveness.
Abstract: Computations have been conducted on curved, three-dimensional discrete-hole film cooling geometries that included the mainflow, injection hole, and supply plenum regions. Both convex and concave film cooling geometries were studied. The effects of several film cooling parameters have been investigated, including the effects of blowing ratio, injection angle, hole length, hole spacing, and hole staggering. The blowing ratio was varied from 0.5 to 1.5, the injection angle from 35° to 65°, the hole length from 1.75D to 6.0D, and the hole spacing from 2D to 3D. The staggered-hole arrangement considered included two rows. The computations were performed by solving the fully elliptic, three dimensional Navier-Stokes equations over a body fitted grid. Turbulence closure was achieved using a modified k-e model in which algebraic relations were used for the turbulent viscosity and the turbulent Prandtl number. The results presented and discussed include plots of adiabatic effectiveness as well as plots of velocity contours and velocity vectors in cross-stream planes. The present study reveals that the blowing ratio, hole spacing, and hole staggering are among the most significant film cooling parameters. Furthermore: (1) the optimum blowing ratios for curved surfaces are higher than those for flat surfaces, (2) a reduction of hole spacing from 3D to 2D resulted in a very significant increase in adiabatic effectiveness, especially on the concave surface, (3) the increase in cooling effectiveness with decreasing hole spacing was found due to not only the increased coolant mass per unit area, but also the smaller jet penetration and the weaker counter-rotating vortices, (4) for all practical purposes, the hole length was found to be a much less significant film cooling parameter.Copyright © 1998 by ASME

11 citations