scispace - formally typeset
Search or ask a question
Author

Suhas V. Patankar

Other affiliations: Innovative Research Inc.
Bio: Suhas V. Patankar is an academic researcher from University of Minnesota. The author has contributed to research in topics: Heat transfer & Turbulence. The author has an hindex of 42, co-authored 135 publications receiving 7165 citations. Previous affiliations of Suhas V. Patankar include Innovative Research Inc..


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a blocked-off region procedure was proposed to model radiative transfer in irregular geometries using a Cartesian coordinates finite-volume method (FVM) for straight-edged, inclined and curved boundaries.
Abstract: This article presents a blocked-off-region procedure to model radiative transfer in irregular geometries using a Cartesian coordinates finite-volume method (FVM). Straight-edged, inclined and curved boundaries can be treated. It is capable of handling participating or transparent media enclosed by black or reflecting walls. With this procedure, irregular geometries can be specified through the problem specification portion of the program. Four test problems are used to show that the procedure is capable of reproducing available results for inclined and curved walls, transparent, nonscattering, and anisotropically scattering media.

118 citations

Journal ArticleDOI
TL;DR: This survey, although extensive cannot include every paper; some selection is necessary, is intended to encompass the English language heat transfer papers published in 2003, including some translations of foreign language papers.

106 citations

Journal ArticleDOI
TL;DR: In this article, an analysis of the flow and heat transfer in an interrupted-plate passage, which is an idealization of the offset-fin heat exchanger, is presented, where the plates are considered to be of finite thickness.

102 citations

Journal ArticleDOI
TL;DR: A review of the heat transfer literature published in 2005 can be found in this article, where the authors restrict themselves to papers published in English through a peer-review process, with selected translations from journals published in other languages.

96 citations

Journal ArticleDOI
TL;DR: In this paper, three popular spatial differencing practices for the discrete ordinates method are examined in detail for a basic two-dimensional Cartesian coordinates problem, including positive, step, and diamond schemes.
Abstract: Three popular spatial differencing practices for the discrete ordinates method are examined in detail for a basic two-dimensional Cartesian coordinates problem. These differencing schemes are 1) positive, 2) step, and 3) diamond schemes. The diamond scheme is shown to produce negative intensities under certain conditions irrespective of the number of control volumes employed, requiring some form of negative intensity fix-up. In absorbing-emitting or absorbing-emitting-scattering media, grid refinement can result in negative intensities when the diamond scheme is used. The diamond scheme and a positive scheme, which sets the negative intensities encountered in the diamond scheme to zero or very small number for purely absorbing media, can also produce physically unrealistic overshoots. The step scheme, although not considered as accurate as the diamond scheme, gives physically realistic results for the basic problem considered. Further evaluation of Fiveland's positive conditions, and variable weight and exponential-type schemes indicate a need for alternate spatial differencing schemes that describe the physics of radiative heat transfer more accurately.

88 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of the history of thermal energy storage with solid-liquid phase change has been carried out and three aspects have been the focus of this review: materials, heat transfer and applications.

4,019 citations

Journal ArticleDOI
TL;DR: The performances of SIMPLE, SIMPLER, and SIMPLEC are compared for two recirculating flow problems and several modifications to the method are shown which both simplify its implementation and reduce solution costs.
Abstract: Variations of the SIMPLE method of Patankar and Spalding have been widely used over the past decade to obtain numerical solutions to problems involving incompressible flows. The present paper shows several modifications to the method which both simplify its implementation and reduce solution costs. The performances of SIMPLE, SIMPLER, and SIMPLEC (the present method) are compared for two recirculating flow problems. The paper is addressed to readers who already have experience with SIMPLE or its variants.

3,276 citations

Journal ArticleDOI
TL;DR: A large selection of solution methods for linear systems in saddle point form are presented, with an emphasis on iterative methods for large and sparse problems.
Abstract: Large linear systems of saddle point type arise in a wide variety of applications throughout computational science and engineering. Due to their indefiniteness and often poor spectral properties, such linear systems represent a significant challenge for solver developers. In recent years there has been a surge of interest in saddle point problems, and numerous solution techniques have been proposed for this type of system. The aim of this paper is to present and discuss a large selection of solution methods for linear systems in saddle point form, with an emphasis on iterative methods for large and sparse problems.

2,253 citations

Journal ArticleDOI
TL;DR: The aim of this paper is to present the reader with a perspective on how JFNK may be applicable to applications of interest and to provide sources of further practical information.

1,803 citations

Dissertation
01 Jan 1996
TL;DR: An automatic error-controlled adaptive mesh refinement algorithm is set up in order to automatically produce a solution of pre-determined accuracy, based on a new stabilised and bounded second-order differencing scheme proposed.
Abstract: The accuracy of numerical simulation algorithms is one of main concerns in modern Computational Fluid Dynamics. Development of new and more accurate mathematical models requires an insight into the problem of numerical errors. In order to construct an estimate of the solution error in Finite Volume calculations, it is first necessary to examine its sources. Discretisation errors can be divided into two groups: errors caused by the discretisation of the solution domain and equation discretisation errors. The first group includes insufficient mesh resolution, mesh skewness and non-orthogonality. In the case of the second order Finite Volume method, equation discretisation errors are represented through numerical diffusion. Numerical diffusion coefficients from the discretisation of the convection term and the temporal derivative are derived. In an attempt to reduce numerical diffusion from the convection term, a new stabilised and bounded second-order differencing scheme is proposed. Three new methods of error estimation are presented. The Direct Taylor Series Error estimate is based on the Taylor series truncation error analysis. It is set up to enable single-mesh single-run error estimation. The Moment Error estimate derives the solution error from the cell imbalance in higher moments of the solution. A suitable normalisation is used to estimate the error magnitude. The Residual Error estimate is based on the local inconsistency between face interpolation and volume integration. Extensions of the method to transient flows and the Local Residual Problem error estimate are also given. Finally, an automatic error-controlled adaptive mesh refinement algorithm is set up in order to automatically produce a solution of pre-determined accuracy. It uses mesh refinement and unrefinement to control the local error magnitude. The method is tested on several characteristic flow situations, ranging from incompressible to supersonic flows, for both steady-state and transient problems.

1,418 citations