scispace - formally typeset
Search or ask a question
Author

Sukant Garg

Bio: Sukant Garg is an academic researcher from National Institute of Advanced Industrial Science and Technology. The author has contributed to research in topics: Cancer cell & Cancer. The author has an hindex of 8, co-authored 22 publications receiving 182 citations. Previous affiliations of Sukant Garg include University of Tsukuba & Max Planck Society.

Papers
More filters
Journal ArticleDOI
TL;DR: It is justifiable to propose cucurbitacin B as a mainline chemotherapy before the onset and after the diagnosis of cancer, through various molecular signaling pathways, as detailed in the below sections with summarized tables.
Abstract: Cancer is one of the most important healthcare matters, with the worst prognosis but the best possibilities for scientific development. It is likely to increase in the future and cause global havoc designating it as an epidemic. Cancer development requires urgent intervention. Past few decades have witnessed extensive research to challenge carcinogenesis. Treatment involving synthetic discipline is often associated with severe adverse effects, or even worsened prognosis. Accordingly, newer economic and patient friendly molecules are warranted. Many natural substances have proved their potential so far. Cucurbitacin B against cancer and other diseases has achieved towering popularity among the researchers around the world, as detailed in the below sections with summarized tables. In line with the fascinating role of cucurbitacin B against various types of cancers, through various molecular signaling pathways, it is justifiable to propose cucurbitacin B as a mainline chemotherapy before the onset and after the diagnosis of cancer.

61 citations

Journal ArticleDOI
TL;DR: Investigation of fucoxanthin activities in human cancer cell culture-based viability, migration, and molecular assays found that it possesses strong anticancer and anti-metastatic activities that work irrespective of the p53 status of cancer cells.
Abstract: Fucoxanthin is commonly found in marine organisms; however, to date, it has been one of the scarcely explored natural compounds. We investigated its activities in human cancer cell culture-based viability, migration, and molecular assays, and found that it possesses strong anticancer and anti-metastatic activities that work irrespective of the p53 status of cancer cells. In our experiments, fucoxanthin caused the transcriptional suppression of mortalin. Cell phenotype-driven molecular analyses on control and treated cells demonstrated that fucoxanthin caused a decrease in hallmark proteins associated with cell proliferation, survival, and the metastatic spread of cancer cells at doses that were relatively safe to the normal cells. The data suggested that the cancer therapy regimen may benefit from the recruitment of fucoxanthin; hence, it warrants further attention for basic mechanistic studies as well as drug development.

34 citations

Journal ArticleDOI
11 May 2018
TL;DR: Clinical and therapeutic relevance of CARF in EMT and cancer invasiveness/metastasis are reported, and it is proposed as a potent therapeutic target of aggressive cancers.
Abstract: CARF (Collaborator of ARF)/CDKN2AIP was discovered as a novel ARF-binding protein. It has been established as an essential cell survival, p53-, and cell proliferation-regulatory protein. Although a moderate upregulation of CARF caused growth arrest and senescence, its excessively enriched levels were shown to facilitate aggressive proliferation and malignant transformation of cancer cells. Here, we examined the relevance of CARF levels in clinical tumors and found its amplification (both at gene and transcript levels) in a variety of invasive and metastatic malignancies. Consistent with the clinical readouts, enrichment of CARF in cancer cells promoted epithelial–mesenchymal transition (EMT). Cancer database and molecular analyses revealed that it activates Wnt/β-catenin signaling axis, as evident by enhanced nuclear localization and function of β-catenin marked by increased level of SNAIL1, SNAIL2, ZEB1, and TWIST1 and its downstream gene targets. Of note, targeted knockdown of CARF led to decrease in nuclear β-catenin and its key downstream effectors, involved in EMT progression. Consistent with this, CARF targeting in vivo either by naked siRNA or CARF shRNA harboring adeno-oncolytic virus caused suppression of tumor progression and lung metastasis. Taken together, we report clinical and therapeutic relevance of CARF in EMT and cancer invasiveness/metastasis, and propose it as a potent therapeutic target of aggressive cancers.

33 citations

Journal ArticleDOI
TL;DR: It is proposed that CucWi-N is a potential natural anticancer drug that warrants further mechanistic and clinical studies and possesses high capability to target mortalin-p53 interaction and hnRNP-K proteins.
Abstract: Cancer, an uncontrolled proliferation syndrome, is treated with synthetic chemotherapeutic drugs that are associated with severe adverse effects. Development and application of new natural compounds is warranted to deal with the exponentially increasing incidence of cancer worldwide. Keeping selective toxicity to cancer cells as a priority criterion, we developed a combination of Cucurbitacin B and Withanone, and analyzed its anticancer potential using non-small cell lung cancer cells. We demonstrate that the selective cytotoxicity of the combination, called CucWi-N, to cancer cells is mediated by induction of cellular senescence that was characterized by decrease in Lamin A/C, CDK2, CDK4, Cyclin D, Cyclin E, phosphorylated RB, mortalin and increase in p53 and CARF proteins. It compromised cancer cell migration that was mediated by decrease in mortalin, hnRNP-K, vascular endothelial growth factor, matrix metalloproteinase 2, and fibronectin. We provide in silico, molecular dynamics and experimental data to support that CucWi-N (i) possesses high capability to target mortalin-p53 interaction and hnRNP-K proteins, (ii) triggers replicative senescence and inhibits metastatic potential of the cancer cells, and (iii) inhibits tumor progression and metastasis in vivo. We propose that CucWi-N is a potential natural anticancer drug that warrants further mechanistic and clinical studies.

25 citations

Journal ArticleDOI
24 Mar 2016-PLOS ONE
TL;DR: In vivo xenograft tumor assays in nude mice revealed dose-dependent suppression of tumor growth and lung metastasis with no toxicity to the animals suggesting that AQHAR could be a potent and safe natural drug for cancer treatment.
Abstract: Helicteres angustifolia L. is a shrub that forms a common ingredient of several cancer treatment recipes in traditional medicine system both in China and Laos. In order to investigate molecular mechanisms of its anticancer activity, we prepared aqueous extract of Helicteres angustifolia L. Roots (AQHAR) and performed several in vitro assays using human normal fibroblasts (TIG-3) and osteosarcoma (U2OS). We found that AQHAR caused growth arrest/apoptosis of U2OS cells in a dose-dependent manner. It showed no cytotoxicity to TIG-3 cells at doses up to 50 μg/ml. Biochemical, imaging and cell cycle analyses revealed that it induces ROS signaling and DNA damage response selectively in cancer cells. The latter showed upregulation of p53, p21 and downregulation of Cyclin B1 and phospho-Rb. Furthermore, AQHAR-induced apoptosis was mediated by increase in pro-apoptotic proteins including cleaved PARP, caspases and Bax. Anti-apoptotic protein Bcl-2 showed decrease in AQHAR-treated U2OS cells. In vivo xenograft tumor assays in nude mice revealed dose-dependent suppression of tumor growth and lung metastasis with no toxicity to the animals suggesting that AQHAR could be a potent and safe natural drug for cancer treatment.

24 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The present review has extended to describe other promising compounds including dihydroartemisinin, ginsenoside Rh2, compound K, cucurbitacins D, E, I, tanshinone IIA and cryptotanshin one in view of their potentials in cancer therapy.
Abstract: Numerous natural products originated from Chinese herbal medicine exhibit anti-cancer activities, including anti-proliferative, pro-apoptotic, anti-metastatic, anti-angiogenic effects, as well as regulate autophagy, reverse multidrug resistance, balance immunity, and enhance chemotherapy in vitro and in vivo. To provide new insights into the critical path ahead, we systemically reviewed the most recent advances (reported since 2011) on the key compounds with anti-cancer effects derived from Chinese herbal medicine (curcumin, epigallocatechin gallate, berberine, artemisinin, ginsenoside Rg3, ursolic acid, silibinin, emodin, triptolide, cucurbitacin B, tanshinone I, oridonin, shikonin, gambogic acid, artesunate, wogonin, β-elemene, and cepharanthine) in scientific databases (PubMed, Web of Science, Medline, Scopus, and Clinical Trials). With a broader perspective, we focused on their recently discovered and/or investigated pharmacological effects, novel mechanism of action, relevant clinical studies, and their innovative applications in combined therapy and immunomodulation. In addition, the present review has extended to describe other promising compounds including dihydroartemisinin, ginsenoside Rh2, compound K, cucurbitacins D, E, I, tanshinone IIA and cryptotanshinone in view of their potentials in cancer therapy. Up to now, the evidence about the immunomodulatory effects and clinical trials of natural anti-cancer compounds from Chinese herbal medicine is very limited, and further research is needed to monitor their immunoregulatory effects and explore their mechanisms of action as modulators of immune checkpoints.

214 citations

Journal ArticleDOI
TL;DR: A homology-based structural model of transmembrane protease serine 2 (TMPRSS2), a cell surface receptor, required for entry of virus to the target host cell is used, finding that both Wi-A and Wi-N could bind and stably interact at the catalytic site of TMPR SS2.
Abstract: Coronavirus disease 2019 (COVID-19) initiated in December 2019 in Wuhan, China and became pandemic causing high fatality and disrupted normal life calling world almost to a halt. Causative agent is a novel coronavirus called Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2/2019-nCoV). While new line of drug/vaccine development has been initiated world-wide, in the current scenario of high infected numbers, severity of the disease and high morbidity, repurposing of the existing drugs is heavily explored. Here, we used a homology-based structural model of transmembrane protease serine 2 (TMPRSS2), a cell surface receptor, required for entry of virus to the target host cell. Using the strengths of molecular docking and molecular dynamics simulations, we examined the binding potential of Withaferin-A (Wi-A), Withanone (Wi-N) and caffeic acid phenethyl ester to TPMRSS2 in comparison to its known inhibitor, Camostat mesylate. We found that both Wi-A and Wi-N could bind and stably interact at the catalytic site of TMPRSS2. Wi-N showed stronger interactions with TMPRSS2 catalytic residues than Wi-A and was also able to induce changes in its allosteric site. Furthermore, we investigated the effect of Wi-N on TMPRSS2 expression in MCF7 cells and found remarkable downregulation of TMPRSS2 mRNA in treated cells predicting dual action of Wi-N to block SARS-CoV-2 entry into the host cells. Since the natural compounds are easily available/affordable, they may even offer a timely therapeutic/preventive value for the management of SARS-CoV-2 pandemic. We also report that Wi-A/Wi-N content varies in different parts of Ashwagandha and warrants careful attention for their use.Communicated by Ramaswamy H. Sarma.

116 citations

Journal ArticleDOI
TL;DR: The studied carotenoid acted against 13 bacteria growing in aerobic conditions and was observed to have a significantly stronger impact on Gram-positive than Gram-negative bacteria.
Abstract: Fucoxanthin is a carotenoid produced by brown algae and diatoms. This compound has several biological properties such as antioxidant, anti-obesity, anti-diabetic, anticancer, and antimicrobial activities. Unfortunately, until now the latter effect has been poorly confirmed. The aim of this study was an evaluation of fucoxanthin activity against 20 bacterial species. Antimicrobial effect of fucoxanthin was determined by using the agar disc-diffusion and micro-dilution methods. The studied carotenoid acted against 13 bacteria growing in aerobic conditions. It was observed to have a significantly stronger impact on Gram-positive than Gram-negative bacteria. Mean zones of growth inhibition (ZOIs) for Gram-positive bacteria ranged between 9.0 and 12.2 mm, while for Gram-negative were from 7.2 to 10.2 mm. According to the agar disc-diffusion method, the highest activity of fucoxanthin was exhibited against Streptococcus agalactiae (mean ZOI 12.2 mm), Staphylococcus epidermidis (mean ZOI 11.2 mm), and Staphylococcus aureus (mean ZOI 11.0 mm), and in the microdilution test towards Streptococcus agalactiae with the minimal inhibitory concentration (MIC) of 62.5 µg/mL. On the other hand, fucoxanthin was not active against strict anaerobic bacteria.

106 citations

01 Feb 2010
TL;DR: It is shown that the multi-scale structure of IFs is crucial for their characteristic mechanical properties, in particular their ability to undergo severe deformation of ≈300% strain without breaking, facilitated by a cascaded activation of a distinct deformation mechanisms operating at different levels.
Abstract: Intermediate filaments (IFs), in addition to microtubules and microfilaments, are one of the three major components of the cytoskeleton in eukaryotic cells, playing a vital role in mechanotransduction and in providing mechanical stability to cells (Figure 1) [1]. Despite the importance of IF mechanics for cell biology and cell mechanics, the structural basis for their mechanical properties remains unknown. Specifically, our understanding of fundamental filament properties, such as the basis for their great extensibility, stiffening properties, and their exceptional mechanical resilience remains limited. This has prevented us from answering fundamental structure-function relationship questions related to the biomechanical role of intermediate filaments, which is crucial to link structure and function in the protein material’s biological context.Copyright © 2010 by ASME

104 citations

Journal ArticleDOI
TL;DR: The biological function of ZEB1 in tumorigenic progression and epigenetic modifications and elucidate its transcriptional network are outlined, which is a suitable potential target for the design of novel anticancer drugs.

92 citations