scispace - formally typeset
Search or ask a question
Author

Sukumar Brahma

Bio: Sukumar Brahma is an academic researcher from Clemson University. The author has contributed to research in topics: Fault (power engineering) & Microgrid. The author has an hindex of 24, co-authored 84 publications receiving 3401 citations. Previous affiliations of Sukumar Brahma include New Mexico State University & Widener University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the effect of high DG penetration on protective device coordination is explored and an adaptive protection scheme is proposed as a solution to the problems identified, which is implemented on a simulated actual distribution feeder.
Abstract: Conventional power distribution system is radial in nature, characterized by a single source feeding a network of downstream feeders. Protection scheme for distribution system, primarily consisting of fuses and reclosers and, in some cases, relays, has traditionally been designed assuming the system to be radial. After connecting distributed generation (DG), part of the system may no longer be radial, which means the coordination might not hold. The effect of DG on coordination will depend on size, type, and placement of DG. This paper explores the effect of high DG penetration on protective device coordination and suggests an adaptive protection scheme as a solution to the problems identified. Results of implementation of this scheme on a simulated actual distribution feeder are reported.

590 citations

Proceedings ArticleDOI
11 Jul 2001
TL;DR: The effect of DG on protective device coordination such as fuse-fuse, fuse-recloser and relay-relay is explored, finding some margins in which the coordination may hold and certain cases, where no margin is available.
Abstract: Protection of a power system is an extremely important aspect as the duality and scheme of protection decides system reliability, controllability and stability. This paper concentrates on the protection of a distribution system in the light of developments in distributed generation (DG). The conventional distribution system is radial in nature, characterized by a single source feeding a network of down-stream feeders. The protection system has traditionally been designed assuming the system to be radial. After connecting DG, part of the system may no longer be radial, which means the coordination might not hold. The effect of DG on coordination will depend on size, type and placement of DG. This paper explores the effect of DG on protective device coordination such as fuse-fuse, fuse-recloser and relay-relay. In each case, depending on size and placement of DG, there are some margins in which the coordination may hold and certain cases, where no margin is available. These conditions are identified for each case through coordination graphs.

396 citations

Journal ArticleDOI
TL;DR: In this article, a tool based on mathematical morphology (MM) is proposed to detect high impedance faults (HIFs) using a conventional overcurrent relay at the substation to improve the performance of this relay in detecting HIFs.
Abstract: A high impedance fault (HIF) is characterized by a small, nonlinear, random, unstable, and widely varying fault current in a power distribution system. HIFs draw very low fault currents, and hence are not always effectively cleared by conventional overcurrent relays. Various schemes are proposed to detect such faults. This paper presents a method to detect HIFs using a tool based on mathematical morphology (MM). The method is implemented alongside the conventional overcurrent relay at the substation to improve the performance of this relay in detecting HIFs. It is rigorously tested on standard test systems using PSCAD/EMTDC® to generate test waveforms, and Matlab® to implement the method. Simulation results show that the proposed method is fast, secure, and dependable.

273 citations

Journal ArticleDOI
TL;DR: Wavelet transform is introduced to reliably and quickly detect power swings as well as detect any fault during a power swing.
Abstract: Out-of-step blocking function in distance relays is required to distinguish between a power swing and a fault. Speedy and reliable detection of symmetrical faults during power swings presents a challenge. This paper introduces wavelet transform to reliably and quickly detect power swings as well as detect any fault during a power swing. The total number of dyadic wavelet levels of voltage/current waveforms and the choice of particular levels for such detection are carefully studied. A logic block based on the wavelet transform is developed. The output of this block is combined with the output of the conventional digital distance relay to achieve desired performance during power swings. This integrated relay is extensively tested on a simulated system using PSCAD/ EMTDCreg software.

206 citations

Proceedings ArticleDOI
17 Jul 2016
TL;DR: In this article, the probability distribution of measurement noise and its typical power are identified for voltage, current and frequency data recorded at three different voltage levels, and the PMU noise quantification can help in generation of experimental PMU data in close conformity with field PMUs.
Abstract: Data recorded by Phasor Measurement Units (PMUs) contains noise. This paper characterizes and quantifies this noise for voltage, current and frequency data recorded at three different voltage levels. The probability distribution of the measurement noise and its typical power are identified. The PMU noise quantification can help in generation of experimental PMU data in close conformity with field PMU data, bad data removal, missing data prediction, and effective design of statistical filters for noise rejection.

193 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present an energy fundiment analysis for power system stability, focusing on the reliability of the power system and its reliability in terms of power system performance and reliability.
Abstract: (1990). ENERGY FUNCTION ANALYSIS FOR POWER SYSTEM STABILITY. Electric Machines & Power Systems: Vol. 18, No. 2, pp. 209-210.

1,080 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of high DG penetration on protective device coordination is explored and an adaptive protection scheme is proposed as a solution to the problems identified, which is implemented on a simulated actual distribution feeder.
Abstract: Conventional power distribution system is radial in nature, characterized by a single source feeding a network of downstream feeders. Protection scheme for distribution system, primarily consisting of fuses and reclosers and, in some cases, relays, has traditionally been designed assuming the system to be radial. After connecting distributed generation (DG), part of the system may no longer be radial, which means the coordination might not hold. The effect of DG on coordination will depend on size, type, and placement of DG. This paper explores the effect of high DG penetration on protective device coordination and suggests an adaptive protection scheme as a solution to the problems identified. Results of implementation of this scheme on a simulated actual distribution feeder are reported.

590 citations

Journal ArticleDOI
TL;DR: A unified framework is proposed to clarify the important concepts related to DSE, forecasting-aided state estimation, trackingstate estimation, and static state estimation and provide future research needs and directions for the power engineering community.
Abstract: This paper summarizes the technical activities of the Task Force on Power System Dynamic State and Parameter Estimation. This Task Force was established by the IEEE Working Group on State Estimation Algorithms to investigate the added benefits of dynamic state and parameter estimation for the enhancement of the reliability, security, and resilience of electric power systems. The motivations and engineering values of dynamic state estimation (DSE) are discussed in detail. Then, a set of potential applications that will rely on DSE is presented and discussed. Furthermore, a unified framework is proposed to clarify the important concepts related to DSE, forecasting-aided state estimation, tracking state estimation, and static state estimation. An overview of the current progress in DSE and dynamic parameter estimation is provided. The paper also provides future research needs and directions for the power engineering community.

419 citations

Journal ArticleDOI
01 Jan 2011
TL;DR: It is demonstrated that in compact distribution grids voltage control problems and blinding of protection are not likely to occur and that false tripping and fault level have to be considered carefully.
Abstract: In today's distribution grids the number of distributed generation (DG) units is increasing rapidly. Combined heat and power (CHP) plants and wind turbines are most often installed. Integration of these DG units into the distribution grid leads to planning as well as operational challenges. Based on the experience of a Dutch distribution system operators (DSO), this paper addresses several possibilities to handle grid planning issues. Effects on voltage control, grid protection, and fault levels are investigated and described. These aspects are illustrated with the aid of simulations on an existing distribution grid. It is demonstrated that in compact distribution grids voltage control problems and blinding of protection are not likely to occur and that false tripping and fault level have to be considered carefully.

396 citations