scispace - formally typeset
Search or ask a question
Author

Sukumar Chandra

Bio: Sukumar Chandra is an academic researcher from Vidyasagar University. The author has contributed to research in topics: Angular momentum & Boundary value problem. The author has an hindex of 1, co-authored 1 publications receiving 6 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the electro-osmotic flow of a physiological fluid with prominent micropolar characteristics, flowing over a microchannel has been analyzed for a situation, where the system is subject to the action of an external AC electric field.
Abstract: Electro-osmotic flow of a physiological fluid with prominent micropolar characteristics, flowing over a microchannel has been analyzed for a situation, where the system is subject to the action of an external AC electric field. In order to account for the rotation of the micro-particles suspended in the physiological fluid, the fluid has been treated as a micropolar fluid. The microchannel is considered to be bounded by two porous plates executing oscillatory motion. Such motion of the plates will normally induce oscillatory flow of the fluid. The governing equations of the fluid include a second-order partial differential equation depicting Gauss’s law of electrical charge distributions and two other partial differential equations of second order that arise out of the laws of conservation of linear and angular momenta. These equations have been solved under the sole influence of electrokinetic forces, by using appropriate boundary conditions. This enabled us to determine explicit analytical expressions for the electro-osmotic velocity of the fluid and the microrotation of the suspended micro-particles. These expressions have been used to obtain numerical estimates of important physical variables associated with the oscillatory electro-osmotic flow of a blood sample inside a micro-bio-fluidic device. The numerical results presented in graphical form clearly indicate that the formation of an electrical double layer near the vicinity of the wall causes linear momentum to reduce. In contrast, the angular momentum increases with the enhancement of microrotation of the suspended microparticles. The study will find important applications in the validation of results of further experimental and numerical models pertaining to flow in micro-bio-fluidic devices. It will also be useful in the improvement of the design and construction of various micro-bio-fluidic devices.

6 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a comprehensive theoretical study of entropy generation during electrokinetically driven transport of a nanofluid is of prime concern, where the flow is considered to take place on a wavy channel under the action of an external transverse magnetic field and an external pressure gradient.
Abstract: A comprehensive theoretical study of entropy generation during electrokinetically driven transport of a nanofluid is of prime concern in the paper. The flow is considered to take place on a wavy channel under the action of an external transverse magnetic field and an external pressure gradient. Navier slips at the walls of the channel and thermal radiation have been taken into account in the study. The theoretical study has been carried out by developing a mathematical model by taking into account the effects of Joule heating, viscous dissipation, and the transverse magnetic field on heat transfer during the electrokinetic transport of the fluid. The derived analytical expressions have been computed numerically by considering the nanofluid as a mixture of blood and ferromagnetic nanoparticles. Variations in velocity, streaming potential, temperature distribution, Nusselt number, and Bejan number associated with the electrokinetic flow in capillaries have been investigated by the parametric variation method. The results have been presented graphically. The present investigation reveals that streaming potential decreases due to the Hall effect, while for the cooling capacity of the microsystem, we find an opposite behavior due to the Hall effect. The study further reveals that the fluidic temperature is reduced due to increase in the Hall current, and thereby thermal irreversibility of the system is reduced significantly. The results presented here can be considered as the approximate estimates of blood flow dynamics in capillaries during chemotherapy in cancer treatment.

18 citations

Journal ArticleDOI
TL;DR: In this article, the steric effect has been taken into account in the electrical double layer (EDL) region, and the thermal efficiency is discussed under the purview of the second law of thermodynamics.
Abstract: Electrokinetically modulated flow through a hydrophobic microtube embedded in a Darcy–Forchheimer porous medium is investigated in this paper. The steric effect has been taken into account in the electrical double layer (EDL) region. Heat transfer is analysed in the case of Darcy–Forchheimer–Brinkman flow subject to Joule heating. The flow is supposed to take place under the combined influence of electroosmosis and imposed pressure gradient. The governing nonlinear partial differential equations for electric potential, fluid flow and heat transfer are solved numerically by developing an iterative finite difference method that has second order accuracy. The thermal efficiency is discussed under the purview of the second law of thermodynamics. Influences/impact of different physical parameters on velocity, temperature and entropy are investigated and demonstrated graphically. The paper shows that with an increase in the steric effect, the electrokinetic velocity diminishes and that thermal irreversibility is very high in the electrical double layer region, but it reduces drastically in the neighbourhood of the central region of the microtube. Results of the study are likely to be of profuse interest in the design and development of microfluidic devices that deal with critical types of fluid transport mechanism in non-Darcian porous media.

16 citations

Journal ArticleDOI
TL;DR: In this article, the problem of entropy generation during electroosmotically modulated flow of a third-order electrically conducting fluid flowing on a microchannel bounded by silicon-made parallel plates under the influence of a magnetic field, by paying due consideration to the steric effect has been investigated.
Abstract: In the case of steady flow of a fluid under the combined influence of external electric and magnetic fields, the fluid moves forward by forming an axial momentum boundary layer. With this end in view a study has been performed here to investigate the problem of entropy generation during electroosmotically modulated flow of a third-order electrically conducting fluid flowing on a microchannel bounded by silicon-made parallel plates under the influence of a magnetic field, by paying due consideration to the steric effect. The associated mechanism of heat transfer has also been duly taken care of, by considering Cattaneo-Christov heat flux. A suitable finite difference scheme has been developed for the numerical procedure. A detailed study of the velocity and temperature distributions has been made by considering their variations with respect to different physical parameters involved in the problem. The results of numerical computation have been displayed graphically. The computational work has been carried out by considering blood as the working fluid, with the motivation of exploring some interesting phenomena in the context of hemodynamical flow in micro-vessels. Among other variables, parametric variations of the important physical variables, viz. i) skin friction and ii) Nusselt number have been investigated. The study confirms that the random motion of the fluid particles can be controlled by a suitable adjustment of the intensity of an externally applied magnetic field in the transverse direction. It is further revealed that the Nusselt number diminishes, as the Prandtl number gradually increases; however, a steady increase in the Nusselt number occurs with increase in thermal relaxation. Entropy generation is also found to be enhanced with increase in Joule heating. The results of the present study have also been validated in a proper manner.

10 citations

Journal ArticleDOI
TL;DR: In this paper, the development of a mathematical model of blood flow in the microcirculatory system has been studied, where the system is subject to the action of an e.g., an EKG.
Abstract: Of concern in the paper is the development of a mathematical model of blood flow in the microcirculatory system. The study pertains to a situation, where the system is subject to the action of an e...

7 citations