scispace - formally typeset
Search or ask a question
Author

Suman Debnath

Bio: Suman Debnath is an academic researcher from Oak Ridge National Laboratory. The author has contributed to research in topics: Power electronics & Photovoltaic system. The author has an hindex of 12, co-authored 42 publications receiving 1918 citations. Previous affiliations of Suman Debnath include Purdue University & Georgia Institute of Technology.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: A general overview of the basics of operation of the MMC along with its control challenges are discussed, and a review of state-of-the-art control strategies and trends is presented as mentioned in this paper.
Abstract: The modular multilevel converter (MMC) has been a subject of increasing importance for medium/high-power energy conversion systems. Over the past few years, significant research has been done to address the technical challenges associated with the operation and control of the MMC. In this paper, a general overview of the basics of operation of the MMC along with its control challenges are discussed, and a review of state-of-the-art control strategies and trends is presented. Finally, the applications of the MMC and their challenges are highlighted.

1,765 citations

Journal ArticleDOI
TL;DR: In this article, a new hybrid modular multilevel converter for interfacing a full-scale, permanent magnet synchronous generator (PMSG)-based direct-drive variable-speed wind energy conversion system (WECS) is presented.
Abstract: The trend towards multimegawatt (multi-MW) wind turbines and the increasing interest in direct-drive variable-speed wind energy systems have made multilevel converters a promising candidate for large wind energy conversion systems This paper presents a new hybrid modular multilevel converter for interfacing a full-scale, permanent magnet synchronous generator (PMSG)-based direct-drive variable-speed wind energy conversion system (WECS) The proposed hybrid converter, which is used on the grid side of the system, consists of a three-level modular multilevel converter (MMC) in series connection with three H-bridge modules The generator-side converter is based on a conventional three-level neutral-point-clamped converter The proposed hybrid converter, as opposed to the existing full-scale multilevel converter-based wind energy systems, provides structural modularity and a higher dc-bus voltage utilization This paper formulates and analyzes the internal dynamics of the proposed hybrid converter including the circulating currents and the capacitor voltage ripples The ac components of the circulating currents, if not properly reduced, increase the amplitude of the capacitor voltage ripples, rating values of the converter components, and losses Based on the analysis, closed-loop circulating current and capacitor voltage ripple reduction techniques are developed The reduction of capacitor voltage ripples help reduce the capacitor value A mathematical model is also developed for the overall WECS Performance of the overall WECS, under the proposed multilevel converter-based topology and controls, is evaluated based on time domain simulations in the PSCAD/EMTDC environment

143 citations

Journal ArticleDOI
TL;DR: Two new control strategies to reduce the magnitude of the SM capacitor voltage ripple in the MMC-based adjustable-speed drive systems under constant-torque low-speed operation are proposed.
Abstract: The modular multilevel converter (MMC) is increasingly becoming popular for multi-MW drive systems. One of the main technical challenges associated with the operation of MMC for adjustable-speed drives is the large magnitude of submodule (SM) capacitor voltage ripple under constant-torque low-speed operation. This paper proposes two new control strategies to reduce the magnitude of the SM capacitor voltage ripple in the MMC-based adjustable-speed drive systems under constant-torque low-speed operation. The proposed control strategies are based on injecting a square-wave common-mode voltage at the ac-side and a circulating current within the phase-legs to attenuate the low-frequency components of the SM capacitor voltages. The frequency spectrum of the injected circulating current consists of components in the vicinity of either the common-mode frequency or the common-mode frequency and third harmonic of the common-mode frequency. This paper also provides: i) a theoretical comparison of the proposed control strategies with the existing ones; ii) a controller design methodology to systematically determine the controller gains of the proposed control strategies; and iii) a theoretical proof of stability of the proposed control strategies and their design methodology based on Lyapunov analysis of singularly perturbed nonlinear non-autonomous systems. A set of experimental results for various case studies on a laboratory-scale prototype are provided to support the theoretical proof of stability of the proposed control strategies and their design methodology, and to show the superior performance of the proposed strategies over the existing strategy.

143 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a circulating current control strategy in a double-frequency rotating reference frame, which relies on an experimentally identified nonparametric model of circulating currents to determine the coefficients of the controller.
Abstract: The modular multilevel converter (MMC) has attracted significant interest for medium-/high-power energy conversion applications due to its modularity, scalability, and excellent harmonic performance. One of the technical challenges associated with the operation of the MMC is the circulation of double-frequency harmonic currents within its phase legs. This paper proposes a circulating current control strategy in a double-frequency rotating reference frame, which, contrary to the existing solutions that are based on approximate/inaccurate models, relies on an experimentally identified nonparametric model of circulating currents to determine the coefficients of the controller. Minimizing the squared second norm of the error between the open-loop transfer function of the system and a desired one, the coefficients of the controller are determined. To guarantee the stability of the closed-loop system, the minimization problem is subjected to a few constraints. The validity and effectiveness of the proposed control strategy is confirmed, and its dynamic performance is compared with that of an existing solution by experimental results.

108 citations

Journal ArticleDOI
TL;DR: In this paper, a generalized precharging strategy is proposed for the MMC-based systems, which can implement soft startup from the dc or ac side, considering various SM circuits.
Abstract: The modular multilevel converter (MMC) has become the most attractive converter technology for medium/high-power applications, specifically for high-voltage dc (HVdc) transmission systems. One of the technical challenges associated with the operation and control of the MMC-based system is to precharge the submodule (SM) capacitors to their nominal voltage during the startup process. In this paper, considering various SM circuits, a generalized precharging strategy is proposed for the MMC-based systems, which can implement soft startup from the dc or ac side. The proposed precharging strategy can be applicable for various SM circuits and MMC configurations. The proposed startup strategy does not require extra measurements and/or auxiliary power supplies. The charging current is controlled by adjusting the changing rate of the number of blocked and bypassed SM capacitors. Based on the proposed startup strategy, the startup processes of MMC/MMC-HVdc systems with various SM circuits are analyzed and a generalized startup procedure for various MMC-HVdc systems is proposed. In addition, the uncontrollable steady-state SM capacitor voltages of various MMC-based systems are analyzed and the associated precharging time is also investigated. Performance of the proposed strategy for various MMC-HVdc systems is evaluated based on time-domain simulation studies in the PSCAD/EMTDC software environment and experimental results are based on a scaled-down prototype.

39 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A general overview of the basics of operation of the MMC along with its control challenges are discussed, and a review of state-of-the-art control strategies and trends is presented as mentioned in this paper.
Abstract: The modular multilevel converter (MMC) has been a subject of increasing importance for medium/high-power energy conversion systems. Over the past few years, significant research has been done to address the technical challenges associated with the operation and control of the MMC. In this paper, a general overview of the basics of operation of the MMC along with its control challenges are discussed, and a review of state-of-the-art control strategies and trends is presented. Finally, the applications of the MMC and their challenges are highlighted.

1,765 citations

Journal ArticleDOI
TL;DR: In this article, some of the recently proposed multilevel inverter topologies with reduced power switch count are reviewed and analyzed, both in terms of the qualitative and quantitative parameters.
Abstract: Multilevel inverters have created a new wave of interest in industry and research. While the classical topologies have proved to be a viable alternative in a wide range of high-power medium-voltage applications, there has been an active interest in the evolution of newer topologies. Reduction in overall part count as compared to the classical topologies has been an important objective in the recently introduced topologies. In this paper, some of the recently proposed multilevel inverter topologies with reduced power switch count are reviewed and analyzed. The paper will serve as an introduction and an update to these topologies, both in terms of the qualitative and quantitative parameters. Also, it takes into account the challenges which arise when an attempt is made to reduce the device count. Based on a detailed comparison of these topologies as presented in this paper, appropriate multilevel solution can be arrived at for a given application.

890 citations

Journal ArticleDOI
18 May 2015
TL;DR: The most successful generator-converter configurations are addressed along with few promising topologies available in the literature from the market based survey, and the past, present and future trends in megawatt WECS are reviewed in terms of mechanical and electrical technologies, integration to power systems, and control theory.
Abstract: This paper presents a comprehensive study on the state-of-the-art and emerging wind energy technologies from the electrical engineering perspective. In an attempt to decrease cost of energy, increase the wind energy conversion efficiency, reliability, power density, and comply with the stringent grid codes, the electric generators and power electronic converters have emerged in a rigorous manner. From the market based survey, the most successful generator-converter configurations are addressed along with few promising topologies available in the literature. The back-to-back connected converters, passive generator-side converters, converters for multiphase generators, and converters without intermediate dc-link are investigated for high-power wind energy conversion systems (WECS), and presented in low and medium voltage category. The onshore and offshore wind farm configurations are analyzed with respect to the series/parallel connection of wind turbine ac/dc output terminals, and high voltage ac/dc transmission. The fault-ride through compliance methods used in the induction and synchronous generator based WECS are also discussed. The past, present and future trends in megawatt WECS are reviewed in terms of mechanical and electrical technologies, integration to power systems, and control theory. The important survey results, and technical merits and demerits of various WECS electrical systems are summarized by tables. The list of current and future wind turbines are also provided along with technical details.

694 citations

Journal ArticleDOI
TL;DR: An evaluation on how the future EV development, such as connected vehicles, autonomous driving, and shared mobility, would affect EV grid integration as well as the development of the power grid moves toward future energy Internet is presented.
Abstract: Transportation electrification is one of the main research areas for the past decade. Electric vehicles (EVs) are taking over the market share of conventional internal combustion engine vehicles. The increasing popularity of EVs results in higher number of charging stations, which have significant effects on the electricity grid. Different charging strat2egies, as well as grid integration methods, are being developed to minimize the adverse effects of EV charging and to strengthen the benefits of EV grid integration. In this paper, a comprehensive review of the current situation of the EV market, standards, charging infrastructure, and the impact of EV charging on the grid is presented. The paper introduces the current EV status, and provides a comprehensive review on important international EV charging and grid interconnection standards. Different infrastructure configurations in terms of control and communication architectures for EV charging are studied and evaluated. The electric power market is studied by considering the participation roles of EV aggregators and individual EV owners, and different optimization and game based algorithms for EV grid integration management are reviewed. The paper specially presents an evaluation on how the future EV development, such as connected vehicles, autonomous driving, and shared mobility, would affect EV grid integration as well as the development of the power grid moves toward future energy Internet and how EVs would affect and benefit the development of the future energy Internet. Finally, the challenges and suggestions for the future development of the EV charging and grid integration infrastructure are evaluated and summarized.

417 citations

Journal ArticleDOI
TL;DR: The development of MMC circuit topologies and their mathematical models over the years are presented and the evolution and technical challenges of the classical and model predictive control methods are discussed.
Abstract: Modular multilevel converter (MMC) is one of the most promising topologies for medium to high-voltage high-power applications. The main features of MMC are modularity, voltage and power scalability, fault tolerant and transformer-less operation, and high-quality output waveforms. Over the past few years, several research studies are conducted to address the technical challenges associated with the operation and control of the MMC. This paper presents the development of MMC circuit topologies and their mathematical models over the years. Also, the evolution and technical challenges of the classical and model predictive control methods are discussed. Finally, the MMC applications and their future trends are presented.

404 citations