scispace - formally typeset
Search or ask a question
Author

Sumit Dutta

Other affiliations: John Deere
Bio: Sumit Dutta is an academic researcher from North Carolina State University. The author has contributed to research in topics: Flyback converter & Charge pump. The author has an hindex of 12, co-authored 24 publications receiving 652 citations. Previous affiliations of Sumit Dutta include John Deere.

Papers
More filters
Proceedings ArticleDOI
18 Mar 2010
TL;DR: In this article, the Generation-I Solid State Transformer (SST) based on 6.5kV Si-IGBT is proposed for interface with 12kV distribution system voltage.
Abstract: The Solid State Transformer (SST) is one of the key elements proposed in the National Science Foundation (NSF) Generation-III Engineering Research Center (ERC) “Future Renewable Electric Energy Delivery and Management” (FREEDM) Systems Center. The SST is used to enable active management of distributed renewable energy resources, energy storage devices and loads. In this paper, the Generation-I SST single-phase 20kVA, based on 6.5kV Si-IGBT is proposed for interface with 12kV distribution system voltage. The SST system design parameters, overall system efficiency, high frequency transformer design, dual active bridge converter, auxiliary power supply and gate drives are investigated. Design considerations and experimental results of the prototype SST are reported.

137 citations

Journal ArticleDOI
TL;DR: This paper presents predictive current-mode control for a single-phase high-frequency transformer-isolated dual-active bridge dc-to-dc converter and demonstrates that the application of the predictive control algorithm can remove transient dc offset from the current in high- frequencies isolation transformer within one switching cycle.
Abstract: This paper presents predictive current-mode control for a single-phase high-frequency transformer-isolated dual-active bridge dc-to-dc converter. The predictive control algorithm increases the bandwidth of the current loop of the converter which enables tracking of the current reference within one switching cycle. The paper further demonstrates that the application of the predictive control algorithm can remove transient dc offset from the current in high-frequency isolation transformer within one switching cycle. Direct control of the converter current protects the transformer from saturation even at transient conditions. The control algorithm has been implemented on an experimental setup and transient tests have been performed to validate controller performance. Since the predictive control algorithm is dependent on the measured value of the leakage inductance of the transformer, a compensator has been implemented to improve the parameter insensitivity of the proposed controller.

95 citations

Proceedings ArticleDOI
06 Mar 2011
TL;DR: In this article, the design and hardware implementation and testing of 20kVA Gen-1 silicon based solid state transformer (SST), the high input voltage and high voltage isolation requirement are two major concerns for the SST design.
Abstract: This paper presents the design and hardware implementation and testing of 20kVA Gen-1 silicon based solid state transformer (SST), the high input voltage and high voltage isolation requirement are two major concerns for the SST design. So a 6.5kV 25A dual IGBT module has been customized packaged specially for this high voltage low current application, and an optically coupled high voltage sensor and IGBT gate driver has been designed in order to fulfill the high voltage isolation requirement. This paper also discusses the auxiliary power supply structure and thermal management for the SST power stage.

81 citations

Proceedings ArticleDOI
18 Mar 2010
TL;DR: The experiment results verify the single phase d-q vector controller for the SST cascaded multilevel rectifier to balance the rectifier capacitor voltages and the real power through the DAB parallel modules.
Abstract: In this paper, a 20kVA Solid State Transformer (SST) based on 6.5kV IGBT is proposed for interface with 7.2kV distribution system voltage. The proposed SST consists of a cascaded multilevel AC/DC rectifier stage, a Dual Active Bridge (DAB) converter stage with high frequency transformers and a DC/AC inverter stage. Based on the single phase d-q vector control, a novel control strategy is proposed to balance the rectifier capacitor voltages and the real power through the DAB parallel modules. Furthermore, the power constraints of the voltage balance control are analyzed. The SST switching model simulation demonstrates the effectiveness of the proposed voltage and power balance controller. A 3kW SST scale-down prototype is implemented. The experiment results verify the single phase d-q vector controller for the SST cascaded multilevel rectifier.

79 citations

Proceedings ArticleDOI
01 Nov 2011
TL;DR: In this paper, the authors proposed a power topology for a solid state transformer (SST) with new 15kV SiC IGBT devices, where the targeted efficiency of the proposed SST is 98%.
Abstract: Basic power topology for a Solid State Transformer (SST) with new 15kV SiC IGBT devices is discussed. It is difficult to build high efficient, light weight, magnetically isolated solid state transformer for high voltage (13.8 kV) grid connectivity with existing Si 6.5kV rated IGBTs and diodes. Existing state of the art high voltage (6.5kV), high speed power devices (IGBT) cause considerable amount of loss (switching and conduction loss). With the advent of SiC devices these limitations are largely mitigated and this provides the motivation for new power topologies. The targeted efficiency of the proposed SST is 98%.Simulation results for a 1 MVA proposed SST topology is presented.

75 citations


Cited by
More filters
01 Nov 1981
TL;DR: In this paper, the authors studied the effect of local derivatives on the detection of intensity edges in images, where the local difference of intensities is computed for each pixel in the image.
Abstract: Most of the signal processing that we will study in this course involves local operations on a signal, namely transforming the signal by applying linear combinations of values in the neighborhood of each sample point. You are familiar with such operations from Calculus, namely, taking derivatives and you are also familiar with this from optics namely blurring a signal. We will be looking at sampled signals only. Let's start with a few basic examples. Local difference Suppose we have a 1D image and we take the local difference of intensities, DI(x) = 1 2 (I(x + 1) − I(x − 1)) which give a discrete approximation to a partial derivative. (We compute this for each x in the image.) What is the effect of such a transformation? One key idea is that such a derivative would be useful for marking positions where the intensity changes. Such a change is called an edge. It is important to detect edges in images because they often mark locations at which object properties change. These can include changes in illumination along a surface due to a shadow boundary, or a material (pigment) change, or a change in depth as when one object ends and another begins. The computational problem of finding intensity edges in images is called edge detection. We could look for positions at which DI(x) has a large negative or positive value. Large positive values indicate an edge that goes from low to high intensity, and large negative values indicate an edge that goes from high to low intensity. Example Suppose the image consists of a single (slightly sloped) edge:

1,829 citations

Journal ArticleDOI
TL;DR: In this paper, the dual-active-bridge (DAB) isolated bidirectional dc-dc converter (IBDC) serves as the core circuit of high frequency-link (HFL) power conversion systems.
Abstract: High-frequency-link (HFL) power conversion systems (PCSs) are attracting more and more attentions in academia and industry for high power density, reduced weight, and low noise without compromising efficiency, cost, and reliability. In HFL PCSs, dual-active-bridge (DAB) isolated bidirectional dc-dc converter (IBDC) serves as the core circuit. This paper gives an overview of DAB-IBDC for HFL PCSs. First, the research necessity and development history are introduced. Second, the research subjects about basic characterization, control strategy, soft-switching solution and variant, as well as hardware design and optimization are reviewed and analyzed. On this basis, several typical application schemes of DAB-IBDC for HPL PCSs are presented in a worldwide scope. Finally, design recommendations and future trends are presented. As the core circuit of HFL PCSs, DAB-IBDC has wide prospects. The large-scale practical application of DAB-IBDC for HFL PCSs is expected with the recent advances in solid-state semiconductors, magnetic and capacitive materials, and microelectronic technologies.

1,306 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a systematical technology review essential for the development and application of SST in the distribution system, including high-voltage power devices, high-power and high-frequency transformers, ac/ac converter topologies, and future research directions.
Abstract: The solid-state transformer (SST), which has been regarded as one of the 10 most emerging technologies by Massachusetts Institute of Technology (MIT) Technology Review in 2010, has gained increasing importance in the future power distribution system. This paper presents a systematical technology review essential for the development and application of SST in the distribution system. The state-of-the-art technologies of four critical areas are reviewed, including high-voltage power devices, high-power and high-frequency transformers, ac/ac converter topologies, and applications of SST in the distribution system. In addition, future research directions are presented. It is concluded that the SST is an emerging technology for the future distribution system.

897 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a full-order continuous-time average model using the dc terms and first order terms of transformer current and capacitor voltage as state variables, resulting in a thirdorder model, if capacitor equivalent series resistance (ESR) is not considered, and a sixth-order model if ESR is considered.
Abstract: Full-order continuous-time average modeling and dynamic analysis of bidirectional dc-dc dual active bridge (DAB) converters are studied. The transformer current in DAB converter is purely ac, making continuous-time modeling difficult. The proposed full-order continuous-time average model uses the dc terms and first order terms of transformer current and capacitor voltage as state variables, resulting in a third-order model, if capacitor equivalent series resistance (ESR) is not considered, and a sixth-order model if ESR is considered. A control-to-output-voltage transfer function is derived for DAB converters. Experimental results confirm that the proposed model correctly predicts the small-signal frequency response and an even more accurate prediction can be obtained if capacitor ESR is taken into account.

415 citations

Journal ArticleDOI
TL;DR: This paper summarizes diverse concepts for the next generation of power distribution system, and two transmission engineering techniques are modified for use in distribution engineering: state estimation, and locational marginal pricing.
Abstract: This paper summarizes diverse concepts for the next generation of power distribution system. The objective is to bring distribution engineering more closely aligned to smart grid philosophy. Issues of design, operation, and control are discussed with regard to new system theoretic as well as component/materials advances. In particular, two transmission engineering techniques are modified for use in distribution engineering: state estimation, and locational marginal pricing. The impact of electronic control in distribution systems is discussed. Because education and training have a great impact on distribution engineering, these topics are discussed as well.

401 citations