scispace - formally typeset
Search or ask a question
Author

Sun Li-Ling

Bio: Sun Li-Ling is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Amorphous metal & Supercooling. The author has an hindex of 5, co-authored 13 publications receiving 1487 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the superconductivity of iron-based oxyarsenide Sm[O1-xFx]FeAs was reported, with the onset resistivity transition temperature at 55.0K and Meissner transition at 54.6 K. This compound has the same crystal structure as LaOFeAs with shrunk crystal lattices.
Abstract: We report the superconductivity in iron-based oxyarsenide Sm[O1-xFx]FeAs, with the onset resistivity transition temperature at 55.0K and Meissner transition at 54.6 K. This compound has the same crystal structure as LaOFeAs with shrunk crystal lattices, and becomes the superconductor with the highest critical temperature among all materials besides copper oxides up to now.

1,456 citations

Journal ArticleDOI
TL;DR: In this paper, first-principles calculations with the fully relativistic full potential linearized augmented plane wave (LAPW) method, the plane-wave ultrasoft pseudopotential (PW-PP) and the projector-augmented wave (PAW) methods are studied.
Abstract: Elastic properties of platinum nitride (PtN) are studied by first-principles calculations with the fully relativistic full potential linearized augmented plane-wave (LAPW) method, the plane-wave ultrasoft pseudopotential (PW-PP) and the projector-augmented wave (PAW) methods. The results reveal that: (1) the scalar relativistic scheme is sufficient to treat the valence electronic structure, i.e. the spin-orbit effect has little effect on the bulk modulus value of platinum nitride; (2) the all-electron full potential method is no more accurate than the pseudopotential and PAW-based methods when calculating the lattice constant and bulk modulus properties of the platinum nitride; (3) platinum nitride in zinc-blende structure is unstable and its crystal structure is still an open problem.

24 citations

Journal ArticleDOI
TL;DR: In this article, the compression of Zr44.4Nb7Cu13.5Ni10.8Be24.3 bulk metallic glass (BMG) is investigated at room temperature up to 39 GPa using high-pressure energy dispersive x-ray diffraction with a synchrotron radiation source.
Abstract: The compression of Zr44.4Nb7Cu13.5Ni10.8Be24.3 bulk metallic glass (BMG) is investigated at room temperature up to 39 GPa using {in situ} high-pressure energy dispersive x-ray diffraction with a synchrotron radiation source. The equation of state of the BMG is obtained by the calculation of the radial distribution function. Pressure-induced structural relaxation is exhibited. It is found that below about 6 GPa, the existence of excess free volume contributes to the rapid structural relaxation, which gives rise to rapid volumetric change, and the structural relaxation results in structural stiffness under higher pressure.

16 citations

Journal ArticleDOI
TL;DR: The high pressure behavior of the superconductor MgB2 with a hexagonal structure has been investigated by the in situ synchrotron radiation x-ray diffraction method under pressures up to 42.2 GPa in a diamond anvil cell as mentioned in this paper.
Abstract: The high-pressure behaviour of the superconductor MgB2 with a hexagonal structure has been investigated by the in situ synchrotron radiation x-ray diffraction method under pressures up to 42.2 GPa in a diamond anvil cell. An abrupt decrease of about 7% in the unit cell volume of this material occurs in the pressure range of 26.3-30.2 GPa. A split of the Raman spectrum was also observed. The jump of the compression curve and Raman spectrum are ascribed to an isostructural transition in MgB2 at a pressure of 30.2 GPa.

10 citations

Journal ArticleDOI
TL;DR: In this article, the glass transition temperature Tg of Zr41Ti14Cu12.5Ni10Be22.5 glassy spheres solidified with different cooling rates was investigated by using a differential scanning calorimeter.
Abstract: Droplets of Zr41Ti14Cu12.5Ni10Be22.5 glass-forming alloy with different sizes are solidified in a drop tube containerless process. The glass transition temperature Tg of Zr41Ti14Cu12.5Ni10Be22.5 glassy spheres solidified with different cooling rates is investigated by using a differential scanning calorimeter. It was found that all the amorphous spheres show an increase of Tg with the heating rate. The glassy spheres have a unique value for the glass transition activation energy Eg = 435.50 kJ/mol, which is independent of cooling rate q. The insensitivity of Tg to q is interpreted by an extension of the free volume model for flow.

7 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The observation of superconductivity with zero-resistance transition temperature at 8 K in the PbO-type α-FeSe compound is reported, indicating that this compound has the same, perhaps simpler, planar crystal sublattice as the layered oxypnictides.
Abstract: The recent discovery of superconductivity with relatively high transition temperature (Tc) in the layered iron-based quaternary oxypnictides La[O1−xFx] FeAs by Kamihara et al. [Kamihara Y, Watanabe T, Hirano M, Hosono H (2008) Iron-based layered superconductor La[O1-xFx] FeAs (x = 0.05–0.12) with Tc = 26 K. J Am Chem Soc 130:3296–3297.] was a real surprise and has generated tremendous interest. Although superconductivity exists in alloy that contains the element Fe, LaOMPn (with M = Fe, Ni; and Pn = P and As) is the first system where Fe plays the key role to the occurrence of superconductivity. LaOMPn has a layered crystal structure with an Fe-based plane. It is quite natural to search whether there exists other Fe based planar compounds that exhibit superconductivity. Here, we report the observation of superconductivity with zero-resistance transition temperature at 8 K in the PbO-type α-FeSe compound. A key observation is that the clean superconducting phase exists only in those samples prepared with intentional Se deficiency. FeSe, compared with LaOFeAs, is less toxic and much easier to handle. What is truly striking is that this compound has the same, perhaps simpler, planar crystal sublattice as the layered oxypnictides. Therefore, this result provides an opportunity to better understand the underlying mechanism of superconductivity in this class of unconventional superconductors.

2,544 citations

Journal ArticleDOI
TL;DR: The ternary iron arsenide (BaFe) becomes superconducting by hole doping, which was achieved by partial substitution of the barium site with potassium as mentioned in this paper, which was the first superconductivity discovery.
Abstract: The ternary iron arsenide ${\mathrm{BaFe}}_{2}{\mathrm{As}}_{2}$ becomes superconducting by hole doping, which was achieved by partial substitution of the barium site with potassium. We have discovered bulk superconductivity at ${T}_{c}=38\text{ }\text{ }\mathrm{K}$ in $({\mathrm{Ba}}_{1\ensuremath{-}x}{\mathrm{K}}_{x}){\mathrm{Fe}}_{2}{\mathrm{As}}_{2}$ with $x\ensuremath{\approx}0.4$. The parent compound ${\mathrm{BaFe}}_{2}{\mathrm{As}}_{2}$ crystallizes in the tetragonal ${\mathrm{ThCr}}_{2}{\mathrm{Si}}_{2}$-type structure, which consists of $(\mathrm{FeAs}{)}^{\ensuremath{\delta}\ensuremath{-}}$ iron arsenide layers separated by ${\mathrm{Ba}}^{2+}$ ions. ${\mathrm{BaFe}}_{2}{\mathrm{As}}_{2}$ is a poor metal and exhibits a spin density wave anomaly at 140 K. By substituting ${\mathrm{Ba}}^{2+}$ for ${\mathrm{K}}^{+}$ ions we have introduced holes in the $(\mathrm{FeAs}{)}^{\ensuremath{-}}$ layers, which suppress the anomaly and induce superconductivity. The ${T}_{c}$ of 38 K in $({\mathrm{Ba}}_{0.6}{\mathrm{K}}_{0.4}){\mathrm{Fe}}_{2}{\mathrm{As}}_{2}$ is the highest in hole doped iron arsenide superconductors so far. Therefore, we were able to expand this class of superconductors by oxygen-free compounds with the ${\mathrm{ThCr}}_{2}{\mathrm{Si}}_{2}$-type structure.

2,475 citations

Journal ArticleDOI
TL;DR: The response of the worldwide scientific community to the discovery in 2008 of superconductivity at T c'='26'K in the Fe-based compound LaFeAsO1−x F x has been very enthusiastic.
Abstract: The response of the worldwide scientific community to the discovery in 2008 of superconductivity at T c = 26 K in the Fe-based compound LaFeAsO1−x F x has been very enthusiastic. In short order, ot...

1,373 citations

Journal ArticleDOI
TL;DR: A detailed review of the superconductivity of FePnictide and chalcogenide (FePn/Ch) superconductors can be found in this paper.
Abstract: Kamihara and coworkers' report of superconductivity at ${T}_{c}=26\text{ }\text{ }\mathrm{K}$ in fluorine-doped LaFeAsO inspired a worldwide effort to understand the nature of the superconductivity in this new class of compounds. These iron pnictide and chalcogenide (FePn/Ch) superconductors have Fe electrons at the Fermi surface, plus an unusual Fermiology that can change rapidly with doping, which lead to normal and superconducting state properties very different from those in standard electron-phonon coupled ``conventional'' superconductors. Clearly, superconductivity and magnetism or magnetic fluctuations are intimately related in the FePn/Ch, and even coexist in some. Open questions, including the superconducting nodal structure in a number of compounds, abound and are often dependent on improved sample quality for their solution. With ${T}_{c}$ values up to 56 K, the six distinct Fe-containing superconducting structures exhibit complex but often comparable behaviors. The search for correlations and explanations in this fascinating field of research would benefit from an organization of the large, seemingly disparate data set. This review provides an overview, using numerous references, with a focus on the materials and their superconductivity.

1,349 citations

Journal ArticleDOI
TL;DR: In this article, the magnetic and electronic phase diagram of β-Fe1.01Se has been analyzed and the transition temperature increases from 8.5 to 36.7 K under an applied pressure of 8.9 GPa.
Abstract: Superconductivity was recently observed in the binary iron-based compound, FeSe. It is now shown that under pressure, the transition temperature can rise above 36 K. In addition, no static magnetic ordering is observed for this system, contrary to FeAs superconductors. The discovery of new high-temperature superconductors1 based on FeAs has led to a new ‘gold rush’ in high-TC superconductivity. All of the new superconductors share the same common structural motif of FeAs layers and reach TC values up to 55 K (ref. 2). Recently, superconductivity has been reported in FeSe (ref. 3), which has the same iron pnictide layer structure, but without separating layers. Here, we report the magnetic and electronic phase diagram of β-Fe1.01Se as a function of temperature and pressure. The superconducting transition temperature increases from 8.5 to 36.7 K under an applied pressure of 8.9 GPa. It then decreases at higher pressures. A marked change in volume is observed at the same time as TC rises, owing to a collapse of the separation between the Fe2Se2 layers. No static magnetic ordering is observed for the whole p–T phase diagram. We also report that at higher pressures (starting around 7 GPa and completed at 38 GPa), Fe1.01Se transforms to a hexagonal NiAs-type structure and exhibits non-magnetic behaviour.

883 citations