scispace - formally typeset
Search or ask a question
Author

Sundararaj Stanleyraj Jeremiah

Bio: Sundararaj Stanleyraj Jeremiah is an academic researcher from Yokohama City University. The author has contributed to research in topics: Medicine & Virology. The author has an hindex of 6, co-authored 21 publications receiving 1105 citations.

Papers
More filters
Journal ArticleDOI
09 Jun 2020-JAMA
TL;DR: How to interpret 2 types of diagnostic tests commonly in use for SARS-CoV-2 infections—reverse transcriptase–polymerase chain reaction (RT-PCR) and IgM and IgG enzyme-linked immunosorbent assay (ELISA)—and how the results may vary over time is described.
Abstract: The pandemic of coronavirus disease 2019 (COVID-19) continues to affect much of the world. Knowledge of diagnostic tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still evolving, and a clear understanding of the nature of the tests and interpretation of their findings is important. This Viewpoint describes how to interpret 2 types of diagnostic tests commonly in use for SARS-CoV-2 infections—reverse transcriptase–polymerase chain reaction (RT-PCR) and IgM and IgG enzyme-linked immunosorbent assay (ELISA)—and how the results may vary over time (Figure).

1,277 citations

Journal ArticleDOI
TL;DR: Results indicate that AgNPs are highly potent microbicides against SARS-CoV-2 but should be used with caution due to their cytotoxic effects and their potential to derange environmental ecosystems when improperly disposed.

254 citations

Journal ArticleDOI
16 May 2021
TL;DR: In this article, a monoclonal antibody (mAbs) that exclusively react with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and exhibit no cross-reactivity with other human coronaviruses, including SARS, CoV.
Abstract: The ongoing coronavirus disease 2019 (COVID-19) pandemic is a major global public health concern. Although rapid point-of-care testing for detecting viral antigen is important for management of the outbreak, the current antigen tests are less sensitive than nucleic acid testing. In our current study, we produce monoclonal antibodies (mAbs) that exclusively react with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and exhibit no cross-reactivity with other human coronaviruses, including SARS-CoV. Molecular modeling suggests that the mAbs bind to epitopes present on the exterior surface of the nucleocapsid, making them suitable for detecting SARS-CoV-2 in clinical samples. We further select the optimal pair of anti-SARS-CoV-2 nucleocapsid protein (NP) mAbs using ELISA and then use this mAb pair to develop immunochromatographic assay augmented with silver amplification technology. Our mAbs recognize the variants of concern (501Y.V1-V3) that are currently in circulation. Because of their high performance, the mAbs of this study can serve as good candidates for developing antigen detection kits for COVID-19.

31 citations

Posted ContentDOI
TL;DR: A proteomic approach utilizing data-independent acquisition mass spectrometry (DIA-MS) is introduced to identify the serum proteins closely associated with the prognosis of COVID-19 and uncovered that CHI3L1 and IGFALS could be potent prognostic markers with a high sensitivity.
Abstract: The COVID-19 pandemic is an unprecedented threat to humanity that has provoked global health concerns Since the etiopathogenesis of this illness is not fully characterized, the prognostic factors enabling treatment decisions have not been well documented Accurately predicting the progression of the disease would aid in appropriate patient categorization and thus help determine the best treatment option Here, we have introduced a proteomic approach utilizing data-independent acquisition mass spectrometry (DIA-MS) to identify the serum proteins that are closely associated with COVID-19 prognosis Twenty-seven proteins were differentially expressed between severely ill COVID-19 patients with an adverse or favorable prognosis Ingenuity Pathway Analysis revealed that 15 of the 27 proteins might be regulated by cytokine signaling relevant to interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF), and their differential expression was implicated in the systemic inflammatory response and in cardiovascular disorders We further evaluated practical predictors of the clinical prognosis of severe COVID-19 patients Subsequent ELISA assays revealed that CHI3L1 and IGFALS may serve as highly sensitive prognostic markers Our findings can help formulate a diagnostic approach for accurately identifying COVID-19 patients with severe disease and for providing appropriate treatment based on their predicted prognosis

25 citations


Cited by
More filters
Journal ArticleDOI
25 Aug 2020-JAMA
TL;DR: This review discusses current evidence regarding the pathophysiology, transmission, diagnosis, and management of COVID-19, the novel severe acute respiratory syndrome coronavirus 2 pandemic that has caused a worldwide sudden and substantial increase in hospitalizations for pneumonia with multiorgan disease.
Abstract: Importance The coronavirus disease 2019 (COVID-19) pandemic, due to the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a worldwide sudden and substantial increase in hospitalizations for pneumonia with multiorgan disease. This review discusses current evidence regarding the pathophysiology, transmission, diagnosis, and management of COVID-19. Observations SARS-CoV-2 is spread primarily via respiratory droplets during close face-to-face contact. Infection can be spread by asymptomatic, presymptomatic, and symptomatic carriers. The average time from exposure to symptom onset is 5 days, and 97.5% of people who develop symptoms do so within 11.5 days. The most common symptoms are fever, dry cough, and shortness of breath. Radiographic and laboratory abnormalities, such as lymphopenia and elevated lactate dehydrogenase, are common, but nonspecific. Diagnosis is made by detection of SARS-CoV-2 via reverse transcription polymerase chain reaction testing, although false-negative test results may occur in up to 20% to 67% of patients; however, this is dependent on the quality and timing of testing. Manifestations of COVID-19 include asymptomatic carriers and fulminant disease characterized by sepsis and acute respiratory failure. Approximately 5% of patients with COVID-19, and 20% of those hospitalized, experience severe symptoms necessitating intensive care. More than 75% of patients hospitalized with COVID-19 require supplemental oxygen. Treatment for individuals with COVID-19 includes best practices for supportive management of acute hypoxic respiratory failure. Emerging data indicate that dexamethasone therapy reduces 28-day mortality in patients requiring supplemental oxygen compared with usual care (21.6% vs 24.6%; age-adjusted rate ratio, 0.83 [95% CI, 0.74-0.92]) and that remdesivir improves time to recovery (hospital discharge or no supplemental oxygen requirement) from 15 to 11 days. In a randomized trial of 103 patients with COVID-19, convalescent plasma did not shorten time to recovery. Ongoing trials are testing antiviral therapies, immune modulators, and anticoagulants. The case-fatality rate for COVID-19 varies markedly by age, ranging from 0.3 deaths per 1000 cases among patients aged 5 to 17 years to 304.9 deaths per 1000 cases among patients aged 85 years or older in the US. Among patients hospitalized in the intensive care unit, the case fatality is up to 40%. At least 120 SARS-CoV-2 vaccines are under development. Until an effective vaccine is available, the primary methods to reduce spread are face masks, social distancing, and contact tracing. Monoclonal antibodies and hyperimmune globulin may provide additional preventive strategies. Conclusions and Relevance As of July 1, 2020, more than 10 million people worldwide had been infected with SARS-CoV-2. Many aspects of transmission, infection, and treatment remain unclear. Advances in prevention and effective management of COVID-19 will require basic and clinical investigation and public health and clinical interventions.

3,371 citations

Journal ArticleDOI
01 Jul 2020-BMJ
TL;DR: Higher quality clinical studies assessing the diagnostic accuracy of serological tests for covid-19 are urgently needed, as available evidence does not support the continued use of existing point-of-care serological Tests for coronavirus disease-2019.
Abstract: Objective To determine the diagnostic accuracy of serological tests for coronavirus disease-2019 (covid-19). Design Systematic review and meta-analysis. Data sources Medline, bioRxiv, and medRxiv from 1 January to 30 April 2020, using subject headings or subheadings combined with text words for the concepts of covid-19 and serological tests for covid-19. Eligibility criteria and data analysis Eligible studies measured sensitivity or specificity, or both of a covid-19 serological test compared with a reference standard of viral culture or reverse transcriptase polymerase chain reaction. Studies were excluded with fewer than five participants or samples. Risk of bias was assessed using quality assessment of diagnostic accuracy studies 2 (QUADAS-2). Pooled sensitivity and specificity were estimated using random effects bivariate meta-analyses. Main outcome measures The primary outcome was overall sensitivity and specificity, stratified by method of serological testing (enzyme linked immunosorbent assays (ELISAs), lateral flow immunoassays (LFIAs), or chemiluminescent immunoassays (CLIAs)) and immunoglobulin class (IgG, IgM, or both). Secondary outcomes were stratum specific sensitivity and specificity within subgroups defined by study or participant characteristics, including time since symptom onset. Results 5016 references were identified and 40 studies included. 49 risk of bias assessments were carried out (one for each population and method evaluated). High risk of patient selection bias was found in 98% (48/49) of assessments and high or unclear risk of bias from performance or interpretation of the serological test in 73% (36/49). Only 10% (4/40) of studies included outpatients. Only two studies evaluated tests at the point of care. For each method of testing, pooled sensitivity and specificity were not associated with the immunoglobulin class measured. The pooled sensitivity of ELISAs measuring IgG or IgM was 84.3% (95% confidence interval 75.6% to 90.9%), of LFIAs was 66.0% (49.3% to 79.3%), and of CLIAs was 97.8% (46.2% to 100%). In all analyses, pooled sensitivity was lower for LFIAs, the potential point-of-care method. Pooled specificities ranged from 96.6% to 99.7%. Of the samples used for estimating specificity, 83% (10 465/12 547) were from populations tested before the epidemic or not suspected of having covid-19. Among LFIAs, pooled sensitivity of commercial kits (65.0%, 49.0% to 78.2%) was lower than that of non-commercial tests (88.2%, 83.6% to 91.3%). Heterogeneity was seen in all analyses. Sensitivity was higher at least three weeks after symptom onset (ranging from 69.9% to 98.9%) compared with within the first week (from 13.4% to 50.3%). Conclusion Higher quality clinical studies assessing the diagnostic accuracy of serological tests for covid-19 are urgently needed. Currently, available evidence does not support the continued use of existing point-of-care serological tests. Study registration PROSPERO CRD42020179452.

703 citations

Journal ArticleDOI
12 May 2020-BMJ
TL;DR: The availability of the complete genome of covid-19 early in the epidemic facilitated development of tests to detect viral RNA, which enables infected individuals to be identified and isolated to reduce spread and provides knowledge of regional and national rates of infection to inform public health interventions.
Abstract: ### What you need to know Across the world there is a clamour for covid-19 testing, with Tedros Adhanom Ghebreyesus, director general of the World Health Organization, encouraging countries to “test, test, test.”1 The availability of the complete genome of covid-19 early in the epidemic facilitated development of tests to detect viral RNA.2 Multiple assays with different gene targets have been developed using reverse transcriptase polymerase chain reaction (RT-PCR).3 These viral RNA tests use samples usually obtained from the respiratory tract by nasopharyngeal swab, to detect current infections. Serology blood tests to detect antibodies indicating past infection are being developed; these will not be considered in depth in this article. Testing for covid-19 enables infected individuals to be identified and isolated to reduce spread,4 allows contact tracing for exposed individuals,5 and provides knowledge of regional and national rates of infection to inform public health interventions. However, questions remain on how to apply test results to make optimal decisions about individual patients. ### Search strategy This article was produced at speed to address an urgent need to address uncertainties in testing for covid-19. We searched Pubmed using the terms “covid”, “SARS-CoV-2”, “sensitivity”, “specificity”, “diagnosis”, “test”, and “PCR”, and KSR evidence using terms for covid and test. This was supplemented by discussion with colleagues undertaking formal systematic reviews into covid-19 diagnosis. No test gives a …

631 citations

Journal ArticleDOI
TL;DR: During March to early May 2020, most persons in 10 diverse geographic sites in the US had not been infected with SARS-CoV-2 virus, and the estimated number of infections was much greater than the number of reported cases in all sites.
Abstract: Importance Reported cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection likely underestimate the prevalence of infection in affected communities. Large-scale seroprevalence studies provide better estimates of the proportion of the population previously infected. Objective To estimate prevalence of SARS-CoV-2 antibodies in convenience samples from several geographic sites in the US. Design, Setting, and Participants This cross-sectional study performed serologic testing on a convenience sample of residual sera obtained from persons of all ages. The serum was collected from March 23 through May 12, 2020, for routine clinical testing by 2 commercial laboratory companies. Sites of collection were San Francisco Bay area, California; Connecticut; south Florida; Louisiana; Minneapolis-St Paul-St Cloud metro area, Minnesota; Missouri; New York City metro area, New York; Philadelphia metro area, Pennsylvania; Utah; and western Washington State. Exposures Infection with SARS-CoV-2. Main Outcomes and Measures The presence of antibodies to SARS-CoV-2 spike protein was estimated using an enzyme-linked immunosorbent assay, and estimates were standardized to the site populations by age and sex. Estimates were adjusted for test performance characteristics (96.0% sensitivity and 99.3% specificity). The number of infections in each site was estimated by extrapolating seroprevalence to site populations; estimated infections were compared with the number of reported coronavirus disease 2019 (COVID-19) cases as of last specimen collection date. Results Serum samples were tested from 16 025 persons, 8853 (55.2%) of whom were women; 1205 (7.5%) were 18 years or younger and 5845 (36.2%) were 65 years or older. Most specimens from each site had no evidence of antibodies to SARS-CoV-2. Adjusted estimates of the proportion of persons seroreactive to the SARS-CoV-2 spike protein antibodies ranged from 1.0% in the San Francisco Bay area (collected April 23-27) to 6.9% of persons in New York City (collected March 23-April 1). The estimated number of infections ranged from 6 to 24 times the number of reported cases; for 7 sites (Connecticut, Florida, Louisiana, Missouri, New York City metro area, Utah, and western Washington State), an estimated greater than 10 times more SARS-CoV-2 infections occurred than the number of reported cases. Conclusions and Relevance During March to early May 2020, most persons in 10 diverse geographic sites in the US had not been infected with SARS-CoV-2 virus. The estimated number of infections, however, was much greater than the number of reported cases in all sites. The findings may reflect the number of persons who had mild or no illness or who did not seek medical care or undergo testing but who still may have contributed to ongoing virus transmission in the population.

607 citations

Journal ArticleDOI
TL;DR: The results indicate that COVID-19 is hazardous not only for the elderly but also for middle-aged adults, for whom the infection fatality rate is two orders of magnitude greater than the annualized risk of a fatal automobile accident and far more dangerous than seasonal influenza.
Abstract: Determine age-specific infection fatality rates for COVID-19 to inform public health policies and communications that help protect vulnerable age groups. Studies of COVID-19 prevalence were collected by conducting an online search of published articles, preprints, and government reports that were publicly disseminated prior to 18 September 2020. The systematic review encompassed 113 studies, of which 27 studies (covering 34 geographical locations) satisfied the inclusion criteria and were included in the meta-analysis. Age-specific IFRs were computed using the prevalence data in conjunction with reported fatalities 4 weeks after the midpoint date of the study, reflecting typical lags in fatalities and reporting. Meta-regression procedures in Stata were used to analyze the infection fatality rate (IFR) by age. Our analysis finds a exponential relationship between age and IFR for COVID-19. The estimated age-specific IFR is very low for children and younger adults (e.g., 0.002% at age 10 and 0.01% at age 25) but increases progressively to 0.4% at age 55, 1.4% at age 65, 4.6% at age 75, and 15% at age 85. Moreover, our results indicate that about 90% of the variation in population IFR across geographical locations reflects differences in the age composition of the population and the extent to which relatively vulnerable age groups were exposed to the virus. These results indicate that COVID-19 is hazardous not only for the elderly but also for middle-aged adults, for whom the infection fatality rate is two orders of magnitude greater than the annualized risk of a fatal automobile accident and far more dangerous than seasonal influenza. Moreover, the overall IFR for COVID-19 should not be viewed as a fixed parameter but as intrinsically linked to the age-specific pattern of infections. Consequently, public health measures to mitigate infections in older adults could substantially decrease total deaths.

571 citations