scispace - formally typeset
Search or ask a question
Author

Sundararajan Natarajan

Bio: Sundararajan Natarajan is an academic researcher from Indian Institute of Technology Madras. The author has contributed to research in topics: Finite element method & Smoothed finite element method. The author has an hindex of 34, co-authored 181 publications receiving 4087 citations. Previous affiliations of Sundararajan Natarajan include GE Aviation & Bauhaus University, Weimar.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a linear smoothed eight-node Reissner-Mindlin plate element (Q8 plate element) based on the first order shear deformation theory is developed for the static and free vibration analysis of laminated composite plates, the computation of the interior derivatives of shape function and isoparametric mapping can be removed.

20 citations

Posted Content
TL;DR: In this paper, an error control technique aimed to assess the quality of smoothed finite element approximations is presented, where the authors propose a recovery type error estimator based on an enhanced recovery technique.
Abstract: An error control technique aimed to assess the quality of smoothed finite element approximations is presented in this paper. Finite element techniques based on strain smoothing appeared in 2007 were shown to provide significant advantages compared to conventional finite element approximations. In particular, a widely cited strength of such methods is improved accuracy for the same computational cost. Yet, few attempts have been made to directly assess the quality of the results obtained during the simulation by evaluating an estimate of the discretization error. Here we propose a recovery type error estimator based on an enhanced recovery technique. The salient features of the recovery are: enforcement of local equilibrium and, for singular problems a "smooth+singular" decomposition of the recovered stress. We evaluate the proposed estimator on a number of test cases from linear elastic structural mechanics and obtain precise error estimations whose effectivities, both at local and global levels, are improved compared to recovery procedures not implementing these features.

20 citations

Journal ArticleDOI
TL;DR: The linear virtual element spaces are employed to discretize the semilinear sine–Gordon equation in two dimensions and a priori error estimations in L 2 and H 1 norms are derived.

19 citations

Journal ArticleDOI
TL;DR: In this article, a local type of B-bar formulation is proposed to address locking in degenerated Reissner-Mindlin shell formulation in the context of isogeometric analysis.
Abstract: We propose a local type of B-bar formulation, addressing locking in degenerated Reissner–Mindlin shell formulation in the context of isogeometric analysis. Parasitic strain components are projected onto the physical space locally, i.e. at the element level, using a least-squares approach. The formulation allows the flexible utilization of basis functions of different orders as the projection bases. The introduced formulation is much cheaper computationally than the classical $$\bar{B}$$ method. We show the numerical consistency of the scheme through numerical examples, moreover they show that the proposed formulation alleviates locking and yields good accuracy even for slenderness ratios of $$10^5$$ , and has the ability to capture deformations of thin shells using relatively coarse meshes. In addition it can be opined that the proposed method is less sensitive to locking with irregular meshes.

19 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss the implementation of a cell-based smoothed finite element method (CSFEM) within the commercial finite element software Abaqus, and the salient feature of the CSFEM is that it...
Abstract: In this paper, we discuss the implementation of a cell-based smoothed finite element method (CSFEM) within the commercial finite element software Abaqus. The salient feature of the CSFEM is that it...

19 citations


Cited by
More filters
Reference EntryDOI
31 Oct 2001
TL;DR: The American Society for Testing and Materials (ASTM) as mentioned in this paper is an independent organization devoted to the development of standards for testing and materials, and is a member of IEEE 802.11.
Abstract: The American Society for Testing and Materials (ASTM) is an independent organization devoted to the development of standards.

3,792 citations

Journal ArticleDOI
TL;DR: An overview of the extended/generalized finite element method (GEFM/XFEM) with emphasis on methodological issues is presented in this article, which enables accurate approximation of solutions that involve jumps, kinks, singularities, and other locally non-smooth features within elements.
Abstract: An overview of the extended/generalized finite element method (GEFM/XFEM) with emphasis on methodological issues is presented. This method enables the accurate approximation of solutions that involve jumps, kinks, singularities, and other locally non-smooth features within elements. This is achieved by enriching the polynomial approximation space of the classical finite element method. The GEFM/XFEM has shown its potential in a variety of applications that involve non-smooth solutions near interfaces: Among them are the simulation of cracks, shear bands, dislocations, solidification, and multi-field problems. Copyright © 2010 John Wiley & Sons, Ltd.

1,228 citations

Journal ArticleDOI
TL;DR: This manuscript is to give a practical overview of meshless methods (for solid mechanics) based on global weak forms through a simple and well-structured MATLAB code, to illustrate the discourse.

1,088 citations

Journal ArticleDOI
TL;DR: The essential ingredients in the Virtual Element Method for a simple linear elliptic second-order problem are presented and its computer implementation is emphasized to enable interested readers to readily implement the method.
Abstract: We present the essential ingredients in the Virtual Element Method for a simple linear elliptic second-order problem. We emphasize its computer implementation, which will enable interested readers to readily implement the method.

582 citations

Journal ArticleDOI
TL;DR: A review of carbon nanotube reinforced composite (CNTRC) materials can be found in this article, where the concept of functionally graded (FG) pattern of reinforcement has been applied for functionally graded carbon nanite reinforced composite materials.

541 citations