scispace - formally typeset
Search or ask a question
Author

Sung Chul Bae

Bio: Sung Chul Bae is an academic researcher from Hanyang University. The author has contributed to research in topics: Surface forces apparatus & Surface diffusion. The author has an hindex of 31, co-authored 83 publications receiving 6102 citations. Previous affiliations of Sung Chul Bae include Ulsan National Institute of Science and Technology & Pohang University of Science and Technology.


Papers
More filters
Journal ArticleDOI
20 Jan 2011-Nature
TL;DR: This paper shows how colloidal spheres can be induced to self-assemble into a complex predetermined colloidal crystal—in this case a colloidal kagome lattice—through decoration of their surfaces with a simple pattern of hydrophobic domains, and encodes the target supracolloidal architecture.
Abstract: A challenging goal in materials chemistry and physics is spontaneously to form intended superstructures from designed building blocks. In fields such as crystal engineering and the design of porous materials, this typically involves building blocks of organic molecules, sometimes operating together with metallic ions or clusters. The translation of such ideas to nanoparticles and colloidal-sized building blocks would potentially open doors to new materials and new properties, but the pathways to achieve this goal are still undetermined. Here we show how colloidal spheres can be induced to self-assemble into a complex predetermined colloidal crystal-in this case a colloidal kagome lattice-through decoration of their surfaces with a simple pattern of hydrophobic domains. The building blocks are simple micrometre-sized spheres with interactions (electrostatic repulsion in the middle, hydrophobic attraction at the poles, which we call 'triblock Janus') that are also simple, but the self-assembly of the spheres into an open kagome structure contrasts with previously known close-packed periodic arrangements of spheres. This open network is of interest for several theoretical reasons. With a view to possible enhanced functionality, the resulting lattice structure possesses two families of pores, one that is hydrophobic on the rims of the pores and another that is hydrophilic. This strategy of 'convergent' self-assembly from easily fabricated colloidal building blocks encodes the target supracolloidal architecture, not in localized attractive spots but instead in large redundantly attractive regions, and can be extended to form other supracolloidal networks.

1,125 citations

Journal ArticleDOI
12 Oct 2001-Science
TL;DR: The present subnanowires are very stable under ambient air and aqueous environments, unlike previously reported metal wires of ∼1 nanometer diameter, which existed only transiently in ultrahigh vacuum.
Abstract: We report the synthesis of single-crystalline silver nanowires of atomic dimensions. The ultrathin silver wires with 0.4 nanometer width grow up to micrometer-scale length inside the pores of self-assembled calix[4]hydroquinone nanotubes by electro-/photochemical redox reaction in an ambient aqueous phase. The present subnanowires are very stable under ambient air and aqueous environments, unlike previously reported metal wires of ∼1 nanometer diameter, which existed only transiently in ultrahigh vacuum. The wires exist as coherently oriented three-dimensional arrays of ultrahigh density and thus could be used as model systems for investigating one-dimensional phenomena and as nanoconnectors for designing nanoelectronic devices.

625 citations

Journal ArticleDOI
14 Jan 2011-Science
TL;DR: This work studied the kinetic pathways of self-assembly of “Janus spheres” with hemispherical hydrophobic attraction and found key differences from those characteristic of molecular amphiphiles.
Abstract: Clusters in the form of aggregates of a small number of elemental units display structural, thermodynamic, and dynamic properties different from those of bulk materials. We studied the kinetic pathways of self-assembly of “Janus spheres” with hemispherical hydrophobic attraction and found key differences from those characteristic of molecular amphiphiles. Experimental visualization combined with theory and molecular dynamics simulation shows that small, kinetically favored isomers fuse, before they equilibrate, into fibrillar triple helices with at most six nearest neighbors per particle. The time scales of colloidal rearrangement combined with the directional interactions resulting from Janus geometry make this a prototypical system to elucidate, on a mechanistic level and with single-particle kinetic resolution, how chemical anisotropy and reaction kinetics coordinate to generate highly ordered structures.

492 citations

Journal ArticleDOI
TL;DR: It is commonly presumed that the random displacements that particles undergo as a result of the thermal jiggling of the environment follow a normal, or Gaussian, distribution, but non-Gaussian diffusion in soft materials is more prevalent than expected.
Abstract: It is commonly presumed that the random displacements that particles undergo as a result of the thermal jiggling of the environment follow a normal, or Gaussian, distribution. However, non-Gaussian diffusion in soft materials is more prevalent than expected.

473 citations

Journal ArticleDOI
TL;DR: The nonspecific adsorption of charged nanoparticles onto single-component phospholipid bilayers bearing phosphocholine headgroups is shown, from fluorescence and calorimetry experiments, to cause surface reconstruction at the points where nanoparticles adsorb, which generalizes the notions of environmentally induced surface reconstruction, prominent in metals and semiconductors.
Abstract: The nonspecific adsorption of charged nanoparticles onto single-component phospholipid bilayers bearing phosphocholine headgroups is shown, from fluorescence and calorimetry experiments, to cause surface reconstruction at the points where nanoparticles adsorb. Nanoparticles of negative charge induce local gelation in otherwise fluid bilayers; nanoparticles of positive charge induce otherwise gelled membranes to fluidize locally. Through this mechanism, the phase state deviates from the nominal phase transition temperature by tens of degrees. This work generalizes the notions of environmentally induced surface reconstruction, prominent in metals and semiconductors. Bearing in mind that chemical composition in these single-component lipid bilayers is the same everywhere, this offers a mechanism to generate patchy functional properties in phospholipid membranes.

454 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The state-of-the-art on hybrid porous solids, their advantages, their new routes of synthesis, the structural concepts useful for their 'design', aiming at reaching very large pores are presented.
Abstract: This critical review will be of interest to the experts in porous solids (including catalysis), but also solid state chemists and physicists. It presents the state-of-the-art on hybrid porous solids, their advantages, their new routes of synthesis, the structural concepts useful for their ‘design’, aiming at reaching very large pores. Their dynamic properties and the possibility of predicting their structure are described. The large tunability of the pore size leads to unprecedented properties and applications. They concern adsorption of species, storage and delivery and the physical properties of the dense phases. (323 references)

5,187 citations

Journal ArticleDOI
23 Sep 2005-Science
TL;DR: This crystal structure for porous chromium terephthalate, MIL-101, with large poresizes and surface area has potential as a nanomold for monodisperse nanomaterials, as illustrated here by the incorporation of Keggin polyanions within the cages.
Abstract: We combined targeted chemistry and computational design to create a crystal structure for porous chromium terephthalate, MIL-101, with very large pore sizes and surface area. Its zeotype cubic structure has a giant cell volume (approximately 702,000 cubic angstroms), a hierarchy of extra-large pore sizes (approximately 30 to 34 angstroms), and a Langmuir surface area for N2 of approximately 5900 +/- 300 square meters per gram. Beside the usual properties of porous compounds, this solid has potential as a nanomold for monodisperse nanomaterials, as illustrated here by the incorporation of Keggin polyanions within the cages.

4,369 citations

Journal ArticleDOI
TL;DR: Approaches, Derivatives and Applications Vasilios Georgakilas,† Michal Otyepka,‡ Athanasios B. Bourlinos,† Vimlesh Chandra, Namdong Kim, K. Kim,§,⊥ Radek Zboril,*,‡ and Kwang S. Kim.
Abstract: Approaches, Derivatives and Applications Vasilios Georgakilas,† Michal Otyepka,‡ Athanasios B. Bourlinos,‡ Vimlesh Chandra, Namdong Kim, K. Christian Kemp, Pavel Hobza,‡,§,⊥ Radek Zboril,*,‡ and Kwang S. Kim* †Institute of Materials Science, NCSR “Demokritos”, Ag. Paraskevi Attikis, 15310 Athens, Greece ‡Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic Center for Superfunctional Materials, Department of Chemistry, Pohang University of Science and Technology, San 31, Hyojadong, Namgu, Pohang 790-784, Korea Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo naḿ. 2, 166 10 Prague 6, Czech Republic

3,460 citations

Journal ArticleDOI
TL;DR: The rationales for these studies, the current progress in studies of the interactions of nanomaterials with biological systems, and a perspective on the long-term implications of these findings are provided.
Abstract: An understanding of the interactions between nanoparticles and biological systems is of significant interest. Studies aimed at correlating the properties of nanomaterials such as size, shape, chemical functionality, surface charge, and composition with biomolecular signaling, biological kinetics, transportation, and toxicity in both cell culture and animal experiments are under way. These fundamental studies will provide a foundation for engineering the next generation of nanoscale devices. Here, we provide rationales for these studies, review the current progress in studies of the interactions of nanomaterials with biological systems, and provide a perspective on the long-term implications of these findings.

2,969 citations