scispace - formally typeset
Search or ask a question
Author

Sung Heum Park

Bio: Sung Heum Park is an academic researcher from Pukyong National University. The author has contributed to research in topics: Polymer solar cell & Organic solar cell. The author has an hindex of 31, co-authored 219 publications receiving 8501 citations. Previous affiliations of Sung Heum Park include Gwangju Institute of Science and Technology & Pusan National University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a polymer solar cell based on a bulk hetereojunction design with an internal quantum efficiency of over 90% across the visible spectrum (425 nm to 575 nm) is reported.
Abstract: A polymer solar-cell based on a bulk hetereojunction design with an internal quantum efficiency of over 90% across the visible spectrum (425 nm to 575 nm) is reported. The device exhibits a power-conversion efficiency of 6% under standard air-mass 1.5 global illumination tests.

4,002 citations

Journal ArticleDOI
04 May 2006-Nature
TL;DR: With polyaniline samples prepared using self-stabilized dispersion polymerization, it is found that for samples having room-temperature conductivities in excess of 1,000 S cm-1, the resistivity decreases monotonically as the temperature is lowered down to 5 K, and that the infrared spectra are characteristic of the conventional Drude model even at the lowest frequencies measured.
Abstract: Most plastics are good insulators. But conducting polymers also form the basis of a new field of ‘plastic electronics’. Some of these materials show exceptionally high conductivities, almost as high as metals. But their properties deviate from true metallic behaviour in several important ways. Now a conducting plastic with resistivity properties much more like those of true metals has been synthesized. The properties of this polyaniline compound may bring practical plastic electronics a little closer. True metallic conductivity in a much-studied conducting polymer (polyaniline) is demonstrated, but synthesized by a route that minimizes the density of structural defects believed responsible for the earlier deviations from classical metallic behaviour. Despite nearly three decades of materials development, the transport properties in the ‘metallic state’ of the so-called conducting polymers are still not typical of conventional metals1,2,3,4,5,6,7. The hallmark of metallic resistivity—a monotonic decrease in resistivity with temperature—has not been obtained at temperatures over the full range below room temperature; and a frequency dependent conductivity, σ(ω), typical of metals has also not been observed. In contrast, the low-temperature behaviour of ‘metallic’ polymers has, in all previous cases, exhibited an increase in resistivity as temperature is further decreased, as a result of disorder-induced localization of the charge carriers1,2,3,4. This disorder-induced localization also changes the infrared response such that σ(ω) deviates from the prediction of Drude theory5,6,7. Here we report classic metallic transport data obtained from truly metallic polymers. With polyaniline samples prepared using self-stabilized dispersion polymerization8, we find that for samples having room-temperature conductivities in excess of 1,000 S cm-1, the resistivity decreases monotonically as the temperature is lowered down to 5 K, and that the infrared spectra are characteristic of the conventional Drude model even at the lowest frequencies measured.

804 citations

Journal ArticleDOI
04 Mar 2021-Nature
TL;DR: This work exemplifies how the functionality of metal halide perovskites is extremely sensitive to the nature of the (nano)crystalline surface and presents a route through which to control the formation and migration of surface defects to achieve bandgap stability for light emission and could also have a broader impact on other optoelectronic applications-such as photovoltaics-for which band gap stability is required.
Abstract: Lead halide perovskites are promising semiconductors for light-emitting applications because they exhibit bright, bandgap-tunable luminescence with high colour purity1,2. Photoluminescence quantum yields close to unity have been achieved for perovskite nanocrystals across a broad range of emission colours, and light-emitting diodes with external quantum efficiencies exceeding 20 per cent-approaching those of commercial organic light-emitting diodes-have been demonstrated in both the infrared and the green emission channels1,3,4. However, owing to the formation of lower-bandgap iodide-rich domains, efficient and colour-stable red electroluminescence from mixed-halide perovskites has not yet been realized5,6. Here we report the treatment of mixed-halide perovskite nanocrystals with multidentate ligands to suppress halide segregation under electroluminescent operation. We demonstrate colour-stable, red emission centred at 620 nanometres, with an electroluminescence external quantum efficiency of 20.3 per cent. We show that a key function of the ligand treatment is to 'clean' the nanocrystal surface through the removal of lead atoms. Density functional theory calculations reveal that the binding between the ligands and the nanocrystal surface suppresses the formation of iodine Frenkel defects, which in turn inhibits halide segregation. Our work exemplifies how the functionality of metal halide perovskites is extremely sensitive to the nature of the (nano)crystalline surface and presents a route through which to control the formation and migration of surface defects. This is critical to achieve bandgap stability for light emission and could also have a broader impact on other optoelectronic applications-such as photovoltaics-for which bandgap stability is required.

353 citations

Journal ArticleDOI
TL;DR: Prior to this report, there was no known example of a semiconducting polymer that is both stable in air at (and above) room temperature and capable of withstanding high temperatures for extended periods of time.
Abstract: A bs or pt io n RT 120 170 200 250 300 350 400 Early research on polymer electronic devices successfully demonstrated function and performance adequate for specific applications. As a result, the performance of devices fabricated from semiconducting polymers has improved to the point where ‘‘plastic’’ electronics are now expected to develop into a significant industry with a large market opportunity. However, the limited stability of polymer-based devices continues to hinder the path toward commercialization. Because stability in air is critical to the commercialization of polymer electronic devices, discussions concerning the stability of semiconducting polymers have focused on degradation caused by reaction with oxygen and water vapor. Conjugated polymers are, however, generally believed to be incapable of withstanding high temperatures (i.e., temperatures well above the glasstransition temperature, Tg), [6,7] thus, stability at high temperatures has received less attention. The availability of semiconducting polymers that can survive exposure to elevated temperatures would open a variety of new possibilities. For example, since inorganic electronic devices typically require process steps that must be carried out at high temperature (often over 300 8C), semiconducting polymers capable of withstanding high temperatures will enable the fabrication of novel organic–inorganic hybrid devices. Here, we report the remarkable stability of the poly(2,7carbazole) derivative, poly[N-900-hepta-decanyl-2,7-carbazole-alt5,5-(40,70-di-2-thienyl-20,10,30-benzothiadiazole)], (PCDTBT; see the inset of Fig. 1a). Prior to this report, there was no known example of a semiconducting polymer that is both stable in air at (and above) room temperature and capable of withstanding high temperatures for extended periods of time. PCDTBT is one of a relatively large class of ‘‘donor–acceptor’’ polycarbazole co-polymers. Recently, polymer bulkheterojuction solar cells fabricated with phase-separated blends of PCDTBT and PC71BM were demonstrated with internal quantum efficiency approaching 100%, power conversion efficiency of 17% in response to monochromatic radiation within the absorption band, and power conversion efficiency of 6.1% in response to solar radiation. To investigate the stability of PCDTBT, we have carried out spectroscopic studies on PCDTBT thin films and transport studies using the field-effect transistor (FET) architecture with PCDTBTas the semiconductor material in the channel. Figure 1 shows UV–visable (UV–vis) absorption spectra of PCDTBT thin films annealed for 15 minutes at various temperatures in air (Fig. 1a) and under N2 atmosphere (Fig. 1b). In air, the p–p* absorption spectrum is not affected after exposure to temperatures up to 150 8C. Under N2 atmosphere (Fig 1b), the electronic band structure of PCDTBT is stable after exposure to temperatures as high as 350 8C.

167 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a polymer solar cell based on a bulk hetereojunction design with an internal quantum efficiency of over 90% across the visible spectrum (425 nm to 575 nm) is reported.
Abstract: A polymer solar-cell based on a bulk hetereojunction design with an internal quantum efficiency of over 90% across the visible spectrum (425 nm to 575 nm) is reported. The device exhibits a power-conversion efficiency of 6% under standard air-mass 1.5 global illumination tests.

4,002 citations

Journal ArticleDOI
TL;DR: In this article, a review summarizes recent progress in the development of polymer solar cells and provides a synopsis of major achievements in the field over the past few years, while potential future developments and the applications of this technology are also briefly discussed.
Abstract: This Review summarizes recent progress in the development of polymer solar cells. It covers the scientific origins and basic properties of polymer solar cell technology, material requirements and device operation mechanisms, while also providing a synopsis of major achievements in the field over the past few years. Potential future developments and the applications of this technology are also briefly discussed.

3,832 citations

Journal ArticleDOI
TL;DR: In this article, the authors showed that PFN can be incorporated into polymer light-emitting devices (PLEDs) to enhance electron injection from high-work-function metals such as aluminium (work function w of 4.3 eV) and gold (w ¼ 5.2 eV).
Abstract: typically based on n-type metal oxides, our device is solutionprocessed at room temperature, enabling easy processibility over a large area. Accordingly, the approach is fully amenable to highthroughput roll-to-roll manufacturing techniques, may be used to fabricate vacuum-deposition-free PSCs of large area, and find practical applications in future mass production. Moreover, our discovery overturns a well-accepted belief (the inferior performance of inverted PSCs) and clearly shows that the characteristics of high performance, improved stability and ease of use can be integrated into a single device, as long as the devices are optimized, both optically and electrically, by means of a meticulously designed device structure. We also anticipate that our findings will catalyse the development of new device structures and may move the efficiency of devices towards the goal of 10% for various material systems. Previously, we reported that PFN can be incorporated into polymer light-emitting devices (PLEDs) to enhance electron injection from high-work-function metals such as aluminium (work function w of 4.3 eV) 22,23 and has thus been used to realize high-efficiency, air-stable PLEDs 24 . Furthermore, we also found that efficient electron injection can be obtained even in the most noble metals with extremely high work functions, such as gold (w ¼ 5.2 eV), by lowering the effective work function (for example lowering w in gold by 1.0 eV), which has previously been ascribed to the formation of a strong interface dipole 25 .

3,651 citations