scispace - formally typeset
Search or ask a question
Author

Sung Jin Kim

Other affiliations: Ohio State University, IBM
Bio: Sung Jin Kim is an academic researcher from KAIST. The author has contributed to research in topics: Heat transfer & Thermal resistance. The author has an hindex of 44, co-authored 240 publications receiving 6391 citations. Previous affiliations of Sung Jin Kim include Ohio State University & IBM.


Papers
More filters
Journal ArticleDOI
TL;DR: The description of the fluid mechanics at the interface between a fluid layer and a porous medium was revisited by Beavers and Joseph in this article, and an exact solution describing the interfacial fluid mechanics was presented.

268 citations

Journal ArticleDOI
Sung Jin Kim1, Duckjong Kim1
TL;DR: In this article, the EPRC (Electronic Packaging Research and Development Center) at KAIST and KOSEF (Korea Science and Engineering Foundation) were jointly investigated.
Abstract: This work was sUIψorted by EPRC (Electronic Packaging Research Center) at KAIST, and KOSEF (Korea Science and Engineering Foundation).

238 citations

Journal ArticleDOI
TL;DR: In this paper, a fully developed forced convection in a porous channel bounded by parallel plates is considered based on the general flow model, and exact solutions are obtained and presented for both the velocity and the temperature fields.
Abstract: In this paper fully developed forced convection in a porous channel bounded by parallel plates is considered based on the general flow model. Exact solutions are obtained and presented for both the velocity and the temperature fields. From these results the Nusselt number can be expressed in terms of the Darcy number and the inertia parameter. Finally, comparisons are made with the limiting case of no inertia and/or boundary effects. These results provide an in-depth insight into the underlying relationships between all of the pertinent variables. Furthermore, they can be used as strong candidates for bench marking of many numerical schemes.

232 citations

Journal ArticleDOI
TL;DR: In this paper, several philosophical points with respect to the momentum equation in a porous medium are analyzed, and it is shown that several erroneous/ irrelevant issues were put forward in previous work and that the effect of porosity variation is not required for a high-porosity medium but should be considered for a dense porous medium.

206 citations

Journal ArticleDOI
Junil Ryu1, Do Hyung Choi1, Sung Jin Kim1
TL;DR: In this paper, a three-dimensional analysis procedure for the thermal performance of a manifold microchannel heat sink has been developed and applied to optimize the heat-sink design, and the optimal dimensions and corresponding thermal resistance have a power-law dependence on the pumping power.

182 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This critical review discusses the origins of MOF luminosity, which include the linker, the coordinated metal ions, antenna effects, excimer and exciplex formation, and guest molecules.
Abstract: Metal–organic frameworks (MOFs) display a wide range of luminescent behaviors resulting from the multifaceted nature of their structure. In this critical review we discuss the origins of MOF luminosity, which include the linker, the coordinated metal ions, antenna effects, excimer and exciplex formation, and guest molecules. The literature describing these effects is comprehensively surveyed, including a categorization of each report according to the type of luminescence observed. Finally, we discuss potential applications of luminescent MOFs. This review will be of interest to researchers and synthetic chemists attempting to design luminescent MOFs, and those engaged in the extension of MOFs to applications such as chemical, biological, and radiation detection, medical imaging, and electro-optical devices (141 references).

4,407 citations

01 May 2005

2,648 citations

01 Jan 2007

1,932 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the transport properties of 50-nm-high 1D nanochannels on a chip and showed that they can be used for the separation and preconcentration of proteins.
Abstract: This thesis explores transport phenomena in nanochannels on a chip. Fundamental nanofluidic ionic studies form the basis for novel separation and preconcentration applications for proteomic purposes. The measurements were performed with 50-nm-high 1D nanochannels, which are easily accessible from both sides by two microchannels. Nanometer characteristic apertures were manufactured in the bonded structure of Pyrex-amorphous silicon – Pyrex, in which the thickness of the amorphous silicon layer serves as a spacer to define the height of the nanochannels. The geometry of the nanometer-sized apertures is well defined, which simplifies the modeling of the transport across them. Compared to biological pores, the present nanochannels in Pyrex offer increased stability. Fundamental characteristics of nanometer-sized apertures were obtained by impedance spectroscopy measurements of the nanochannel at different ionic strengths and pH values. A conductance plateau (on a log-log scale) was modeled and measured, establishing due to the dominance of the surface charge density in the nanochannels, which induces an excess of mobile counterions to maintain electroneutrality. The nanochannel conductance can be regulated at low ionic strengths by pH adjustment, and by an external voltage applied on the chip to change the zeta potential. This field-effect allows the regulation of ionic flow which can be exploited for the fabrication of nanofluidic devices. Fluorescence measurements confirm that 50-nm-high nanochannels show an exclusion of co-ions and an enrichment of counterions at low ionic strengths. This permselectivity is related to the increasing thickness of the electrical double layer (EDL) with decreasing salt concentrations, which results in an EDL overlap in an aperture if the height of the nanochannel and the thickness of the EDL are comparable in size. The diffusive transport of charged species and therefore the exclusion-enrichment effect was described with a simple model based on the Poisson-Boltzmann equation. The negatively charged Pyrex surface of the nanometer characteristic apertures can be inversed with chemical surface pretreatments, resulting in an exclusion of cations and an enrichment of anions. When a pressure gradient is applied across the nanochannels, charged molecules are electrostatically rejected at the entrance of the nanometer-sized apertures, which can be used for separation processes. Proteomic applications are presented such as the separation and preconcentration of proteins. The diffusion of Lectin proteins with different isoelectric points and very similar compositions were controlled by regulating the pH value of the buffer. When the proteins are neutral at their pI value, the diffusion coefficient is maximal because the biomolecules does not interact electrostatically with the charged surfaces of the nanochannel. This led to a fast separation of three Lectin proteins across the nanochannel. The pI values measured in this experiment are slightly shifted compared to the values obtained with isoelectric focusing because of reversible adsorption of proteins on the walls which affects the pH value in the nanochannel. An important application in the proteomic field is the preconcentration of biomolecules. By applying an electric field across the nanochannel, anionic and cationic analytes were preconcentrated on the cathodic side of the nanometer-sized aperture whereas on the anodic side depletion of ions was observed. This is due to concentration polarization, a complex of effects related to the formation of ionic concentration gradients in the electrolyte solution adjacent to an ion-selective interface. It was measured that the preconcentration factor increased with the net charge of the molecule, leading to a preconcentration factor of > 600 for rGFP proteins in 9 minutes. Such preconcentrations are important in micro total analysis systems to achieve increased detection signals of analytes contained in dilute solutions. Compared to cylindrical pores, our fabrication process allows the realization of nanochannels on a chip in which the exclusion-enrichment effect and a big flux across the nanometer-sized aperture can be achieved, showing the interest for possible micro total analysis system applications. The described exclusion-enrichment effect as well as concentration polarization play an important role in transport phenomena in nanofluidics. The appendix includes preliminary investigations in DNA molecule separation and fluorescence correlation spectroscopy measurements, which allows investigating the behavior of molecules in the nanochannel itself.

1,636 citations

Journal ArticleDOI
TL;DR: This tutorial provides a broad look at the field of limited feedback wireless communications, and reviews work in systems using various combinations of single antenna, multiple antenna, narrowband, broadband, single-user, and multiuser technology.
Abstract: It is now well known that employing channel adaptive signaling in wireless communication systems can yield large improvements in almost any performance metric. Unfortunately, many kinds of channel adaptive techniques have been deemed impractical in the past because of the problem of obtaining channel knowledge at the transmitter. The transmitter in many systems (such as those using frequency division duplexing) can not leverage techniques such as training to obtain channel state information. Over the last few years, research has repeatedly shown that allowing the receiver to send a small number of information bits about the channel conditions to the transmitter can allow near optimal channel adaptation. These practical systems, which are commonly referred to as limited or finite-rate feedback systems, supply benefits nearly identical to unrealizable perfect transmitter channel knowledge systems when they are judiciously designed. In this tutorial, we provide a broad look at the field of limited feedback wireless communications. We review work in systems using various combinations of single antenna, multiple antenna, narrowband, broadband, single-user, and multiuser technology. We also provide a synopsis of the role of limited feedback in the standardization of next generation wireless systems.

1,605 citations