scispace - formally typeset
Search or ask a question
Author

Sung-Jun Park

Bio: Sung-Jun Park is an academic researcher from Chonnam National University. The author has contributed to research in topics: Inverter & Voltage. The author has an hindex of 15, co-authored 133 publications receiving 1343 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a single-phase five-level PWM inverter is presented to alleviate harmonic components of the output voltage and the load current, and the deadbeat controller is designed and implemented on a prototype.
Abstract: A single-phase five-level PWM inverter is presented to alleviate harmonic components of the output voltage and the load current. Operational principles with switching functions are analyzed. To keep the output voltage sinusoidal and to have the high dynamic performances even in the cases of load variations and the partial magnetization in filter inductor, the deadbeat controller is designed and implemented on a prototype. The validity of the proposed inverter is verified through simulation and experiments. To assess the proposed inverter, it is compared with the conventional single-phase three-level PWM inverter under the conditions of identical supply DC voltage and switching frequency. In addition, it is compared with the five-level cascaded PWM inverter.

334 citations

Journal ArticleDOI
TL;DR: This paper proposes an isolated cascaded multilevel inverter employing low-frequency three-phase transformers and a single DC input power source and controls switching phase angles to obtain an optimal switching pattern identified with the fundamental frequency of the output voltage.
Abstract: This paper proposes an isolated cascaded multilevel inverter employing low-frequency three-phase transformers and a single DC input power source. The proposed circuit configuration can reduce a number of transformers compared with traditional three-phase multilevel inverters using single-phase transformers. It controls switching phase angles to obtain an optimal switching pattern identified with the fundamental frequency of the output voltage. Owing to this control strategy, harmonic components of the output voltage and switching losses can be diminished considerably. To verify the performance of the proposed approach, we implemented computer-aided simulations and experiments using a prototype.

180 citations

Journal ArticleDOI
TL;DR: In this article, a multilevel pulse width-modulation (PWM) inverter scheme for the use of stand-alone photovoltaic systems is presented. And the validity of the proposed system is verified through computer-aided simulations and experimental results using prototypes generating output voltages of an 11 level and a 29 level, respectively.
Abstract: This paper presents a new multilevel pulse width-modulation (PWM) inverter scheme for the use of stand-alone photovoltaic systems. It consists of a PWM inverter, an assembly of LEVEL inverters, generating staircase output voltages, and cascaded transformers. To produce high-quality output voltage waves, it synthesizes a large number of output voltage levels using cascaded transformers, which have a series-connected secondary. By a suitable selection of the secondary turn-ratio of the transformer, the amplitude of an output voltage appears at the rate of an integer to an input dc source. Operational principles and analysis are illustrated in depth. The validity of the proposed system is verified through computer-aided simulations and experimental results using prototypes generating output voltages of an 11 level and a 29 level, respectively, and their results are compared with conventional counterparts.

179 citations

Journal ArticleDOI
TL;DR: A novel high-performance single-phase voltage regulator which has a common arm between the rectifier and inverter, and adopts an appropriate switching strategy is presented, and can be constructed compactly and inexpensively.
Abstract: Regulation of load voltage in single-phase applications is becoming an important issue for critical loads. This paper presents a novel high-performance single-phase voltage regulator which has a common arm between the rectifier and inverter, and adopts an appropriate switching strategy. The proposed voltage regulator employs six switches and can be implemented by only one three-phase inverter module. The proposed voltage regulator has the capability of delivering sinusoidal input current with unity power factor, good output voltage regulation, and bidirectional power flow. For these purposes, a fully digital controller is designed and implemented using a TMS320F240 digital signal processor. In addition, a novel low-cost AC capacitor is also presented. This type of capacitor requires two DC capacitors and two diodes, enabling low-cost and compact manufacturing. Consequently, the complete voltage regulator system, which is mainly suitable for an uninterruptible power supply as well as reactive or nonlinear loads, can be constructed compactly and inexpensively. Experimental results are presented to verify the feasibility of the proposed voltage regulator system.

90 citations

Journal ArticleDOI
TL;DR: An efficient switching pattern is proposed and applied to a multilevel inverter equipped with two cascaded transformers, which have a series-connected secondary and high-performance of the proposed multileVEL scheme embedded in a photovoltaic power conditioning system is verified.

68 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: New trends in power electronics for the integration of wind and photovoltaic (PV) power generators are presented and a review of the appropriate storage-system technology used for the Integration of intermittent renewable energy sources is introduced.
Abstract: The use of distributed energy resources is increasingly being pursued as a supplement and an alternative to large conventional central power stations. The specification of a power-electronic interface is subject to requirements related not only to the renewable energy source itself but also to its effects on the power-system operation, especially where the intermittent energy source constitutes a significant part of the total system capacity. In this paper, new trends in power electronics for the integration of wind and photovoltaic (PV) power generators are presented. A review of the appropriate storage-system technology used for the integration of intermittent renewable energy sources is also introduced. Discussions about common and future trends in renewable energy systems based on reliability and maturity of each technology are presented

3,799 citations

Journal ArticleDOI
TL;DR: This paper first presents a brief overview of well-established multilevel converters strongly oriented to their current state in industrial applications to then center the discussion on the new converters that have made their way into the industry.
Abstract: Multilevel converters have been under research and development for more than three decades and have found successful industrial application. However, this is still a technology under development, and many new contributions and new commercial topologies have been reported in the last few years. The aim of this paper is to group and review these recent contributions, in order to establish the current state of the art and trends of the technology, to provide readers with a comprehensive and insightful review of where multilevel converter technology stands and is heading. This paper first presents a brief overview of well-established multilevel converters strongly oriented to their current state in industrial applications to then center the discussion on the new converters that have made their way into the industry. In addition, new promising topologies are discussed. Recent advances made in modulation and control of multilevel converters are also addressed. A great part of this paper is devoted to show nontraditional applications powered by multilevel converters and how multilevel converters are becoming an enabling technology in many industrial sectors. Finally, some future trends and challenges in the further development of this technology are discussed to motivate future contributions that address open problems and explore new possibilities.

3,415 citations

01 Sep 2010

2,148 citations

01 Jan 1992
TL;DR: In this paper, a multilevel commutation cell is introduced for high-voltage power conversion, which can be applied to either choppers or voltage-source inverters and generalized to any number of switches.
Abstract: The authors discuss high-voltage power conversion. Conventional series connection and three-level voltage source inverter techniques are reviewed and compared. A novel versatile multilevel commutation cell is introduced: it is shown that this topology is safer and more simple to control, and delivers purer output waveforms. The authors show how this technique can be applied to either choppers or voltage-source inverters and generalized to any number of switches.<>

1,202 citations

Journal ArticleDOI
TL;DR: In this paper, a topology study of the PV MICs in the power range below 500 W and covers most topologies recently proposed for MIC applications is presented, where the MIC topologies are classified into three different arrangements based on the dc link configurations.
Abstract: The annual world photovoltaic (PV) cell/module production is growing at almost an exponential rate and has reached 1727 MW in 2005. Building integrated PV (BIPV) projects are emerging as the strongest part of the PV market and grid interactive inverters are a key component in determining the total system cost. Module integrated converter (MIC) technology has become a global trend in grid interactive PV applications and may assist in driving down the balance of system costs to secure an improved total system cost. This paper concentrates on the topology study of the PV MICs in the power range below 500 W and covers most topologies recently proposed for MIC applications. The MIC topologies are classified into three different arrangements based on the dc link configurations. A systematic discussion is also provided at the end of the paper that focuses on the major advantages and disadvantages of each MIC arrangement. These are considered in detail and will provide a useful framework and point of reference for the next generation MIC designs and applications.

1,158 citations