scispace - formally typeset
Search or ask a question
Author

Sung Won Kim

Bio: Sung Won Kim is an academic researcher from Yeungnam University. The author has contributed to research in topics: Network packet & Wireless network. The author has an hindex of 24, co-authored 170 publications receiving 2457 citations. Previous affiliations of Sung Won Kim include Hongik University & University of Florida.


Papers
More filters
Journal ArticleDOI
TL;DR: The Internet of Nano Things and Tactile Internet are driving the innovation in the H-IoT applications and the future course for improving the Quality of Service (QoS) using these new technologies are identified.
Abstract: The impact of the Internet of Things (IoT) on the advancement of the healthcare industry is immense. The ushering of the Medicine 4.0 has resulted in an increased effort to develop platforms, both at the hardware level as well as the underlying software level. This vision has led to the development of Healthcare IoT (H-IoT) systems. The basic enabling technologies include the communication systems between the sensing nodes and the processors; and the processing algorithms for generating an output from the data collected by the sensors. However, at present, these enabling technologies are also supported by several new technologies. The use of Artificial Intelligence (AI) has transformed the H-IoT systems at almost every level. The fog/edge paradigm is bringing the computing power close to the deployed network and hence mitigating many challenges in the process. While the big data allows handling an enormous amount of data. Additionally, the Software Defined Networks (SDNs) bring flexibility to the system while the blockchains are finding the most novel use cases in H-IoT systems. The Internet of Nano Things (IoNT) and Tactile Internet (TI) are driving the innovation in the H-IoT applications. This paper delves into the ways these technologies are transforming the H-IoT systems and also identifies the future course for improving the Quality of Service (QoS) using these new technologies.

446 citations

Journal ArticleDOI
22 Aug 2013-Sensors
TL;DR: The existing literature of this fast emerging application area of cognitive radio wireless sensor networks is classified, the key research that has already been undertaken is highlighted, and open problems are indicated.
Abstract: A cognitive radio wireless sensor network is one of the candidate areas where cognitive techniques can be used for opportunistic spectrum access. Research in this area is still in its infancy, but it is progressing rapidly. The aim of this study is to classify the existing literature of this fast emerging application area of cognitive radio wireless sensor networks, highlight the key research that has already been undertaken, and indicate open problems. This paper describes the advantages of cognitive radio wireless sensor networks, the difference between ad hoc cognitive radio networks, wireless sensor networks, and cognitive radio wireless sensor networks, potential application areas of cognitive radio wireless sensor networks, challenges and research trend in cognitive radio wireless sensor networks. The sensing schemes suited for cognitive radio wireless sensor networks scenarios are discussed with an emphasis on cooperation and spectrum access methods that ensure the availability of the required QoS. Finally, this paper lists several open research challenges aimed at drawing the attention of the readers toward the important issues that need to be addressed before the vision of completely autonomous cognitive radio wireless sensor networks can be realized.

238 citations

Journal ArticleDOI
TL;DR: The limitations of IoT for multimedia computing are explored and the relationship between the M-IoT and emerging technologies including event processing, feature extraction, cloud computing, Fog/Edge computing and Software-Defined-Networks (SDNs) is presented.
Abstract: The immense increase in multimedia-on-demand traffic that refers to audio, video, and images, has drastically shifted the vision of the Internet of Things (IoT) from scalar to Multimedia Internet of Things (M-IoT). IoT devices are constrained in terms of energy, computing, size, and storage memory. Delay-sensitive and bandwidth-hungry multimedia applications over constrained IoT networks require revision of IoT architecture for M-IoT. This paper provides a comprehensive survey of M-IoT with an emphasis on architecture, protocols, and applications. This article starts by providing a horizontal overview of the IoT. Then, we discuss the issues considering the characteristics of multimedia and provide a summary of related M-IoT architectures. Various multimedia applications supported by IoT are surveyed, and numerous use cases related to road traffic management, security, industry, and health are illustrated to show how different M-IoT applications are revolutionizing human life. We explore the importance of Quality-of-Experience (QoE) and Quality-of-Service (QoS) for multimedia transmission over IoT. Moreover, we explore the limitations of IoT for multimedia computing and present the relationship between the M-IoT and emerging technologies including event processing, feature extraction, cloud computing, Fog/Edge computing and Software-Defined-Networks (SDNs). We also present the need for better routing and Physical-Medium Access Control (PHY-MAC) protocols for M-IoT. Finally, we present a detailed discussion on the open research issues and several potential research areas related to emerging multimedia communication in IoT.

182 citations

Journal ArticleDOI
TL;DR: This solution aims at providing a controllable resource-allocation method between uplink and downlink traffic flows and adapting the parameters according to the dynamic traffic load changes and enhances the system utilization by reducing the probability of frame collision.
Abstract: Wireless local area networks (WLANs) based on the IEEE 802.11 standard are becoming increasingly popular and widely deployed. It is likely that WLAN will become an important complementary technology for future cellular systems and will typically be used to provide hotspot coverage. In this paper, the complementary use of WLANs in conjunction with mobile cellular networks is studied. We identify the fairness problem between uplink and downlink traffic flows in the IEEE 802.11 distributed coordination function and then propose an easy solution that can be implemented at the access point (AP) in the MAC layer without modification of the standard for stations (STAs). This solution aims at providing a controllable resource-allocation method between uplink and downlink traffic flows and adapting the parameters according to the dynamic traffic load changes. The proposed solution also enhances the system utilization by reducing the probability of frame collision.

157 citations

Journal ArticleDOI
TL;DR: The resource management mechanisms of the state-of-the-art IoT OSs, such as Contiki, TinyOS, and FreeRTOS, are investigated and the different dimensions of their resource management approaches are studied and their advantages and limitations are highlighted.
Abstract: Recently, the Internet of Things (IoT) concept has attracted a lot of attention due to its capability to translate our physical world into a digital cyber world with meaningful information. The IoT devices are smaller in size, sheer in number, contain less memory, use less energy, and have more computational capabilities. These scarce resources for IoT devices are powered by small operating systems (OSs) that are specially designed to support the IoT devices’ diverse applications and operational requirements. These IoT OSs are responsible for managing the constrained resources of IoT devices efficiently and in a timely manner. In this paper, discussions on IoT devices and OS resource management are provided. In detail, the resource management mechanisms of the state-of-the-art IoT OSs, such as Contiki, TinyOS, and FreeRTOS, are investigated. The different dimensions of their resource management approaches (including process management, memory management, energy management, communication management, and file management) are studied, and their advantages and limitations are highlighted.

155 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The definitions, architecture, fundamental technologies, and applications of IoT are systematically reviewed and the major challenges which need addressing by the research community and corresponding potential solutions are investigated.
Abstract: In recent year, the Internet of Things (IoT) has drawn significant research attention. IoT is considered as a part of the Internet of the future and will comprise billions of intelligent communicating `things'. The future of the Internet will consist of heterogeneously connected devices that will further extend the borders of the world with physical entities and virtual components. The Internet of Things (IoT) will empower the connected things with new capabilities. In this survey, the definitions, architecture, fundamental technologies, and applications of IoT are systematically reviewed. Firstly, various definitions of IoT are introduced; secondly, emerging techniques for the implementation of IoT are discussed; thirdly, some open issues related to the IoT applications are explored; finally, the major challenges which need addressing by the research community and corresponding potential solutions are investigated.

5,295 citations

Journal ArticleDOI
01 May 1975
TL;DR: The Fundamentals of Queueing Theory, Fourth Edition as discussed by the authors provides a comprehensive overview of simple and more advanced queuing models, with a self-contained presentation of key concepts and formulae.
Abstract: Praise for the Third Edition: "This is one of the best books available. Its excellent organizational structure allows quick reference to specific models and its clear presentation . . . solidifies the understanding of the concepts being presented."IIE Transactions on Operations EngineeringThoroughly revised and expanded to reflect the latest developments in the field, Fundamentals of Queueing Theory, Fourth Edition continues to present the basic statistical principles that are necessary to analyze the probabilistic nature of queues. Rather than presenting a narrow focus on the subject, this update illustrates the wide-reaching, fundamental concepts in queueing theory and its applications to diverse areas such as computer science, engineering, business, and operations research.This update takes a numerical approach to understanding and making probable estimations relating to queues, with a comprehensive outline of simple and more advanced queueing models. Newly featured topics of the Fourth Edition include:Retrial queuesApproximations for queueing networksNumerical inversion of transformsDetermining the appropriate number of servers to balance quality and cost of serviceEach chapter provides a self-contained presentation of key concepts and formulae, allowing readers to work with each section independently, while a summary table at the end of the book outlines the types of queues that have been discussed and their results. In addition, two new appendices have been added, discussing transforms and generating functions as well as the fundamentals of differential and difference equations. New examples are now included along with problems that incorporate QtsPlus software, which is freely available via the book's related Web site.With its accessible style and wealth of real-world examples, Fundamentals of Queueing Theory, Fourth Edition is an ideal book for courses on queueing theory at the upper-undergraduate and graduate levels. It is also a valuable resource for researchers and practitioners who analyze congestion in the fields of telecommunications, transportation, aviation, and management science.

2,562 citations

09 Mar 2012
TL;DR: Artificial neural networks (ANNs) constitute a class of flexible nonlinear models designed to mimic biological neural systems as mentioned in this paper, and they have been widely used in computer vision applications.
Abstract: Artificial neural networks (ANNs) constitute a class of flexible nonlinear models designed to mimic biological neural systems. In this entry, we introduce ANN using familiar econometric terminology and provide an overview of ANN modeling approach and its implementation methods. † Correspondence: Chung-Ming Kuan, Institute of Economics, Academia Sinica, 128 Academia Road, Sec. 2, Taipei 115, Taiwan; ckuan@econ.sinica.edu.tw. †† I would like to express my sincere gratitude to the editor, Professor Steven Durlauf, for his patience and constructive comments on early drafts of this entry. I also thank Shih-Hsun Hsu and Yu-Lieh Huang for very helpful suggestions. The remaining errors are all mine.

2,069 citations

01 Jan 2013
TL;DR: From the experience of several industrial trials on smart grid with communication infrastructures, it is expected that the traditional carbon fuel based power plants can cooperate with emerging distributed renewable energy such as wind, solar, etc, to reduce the carbon fuel consumption and consequent green house gas such as carbon dioxide emission.
Abstract: A communication infrastructure is an essential part to the success of the emerging smart grid. A scalable and pervasive communication infrastructure is crucial in both construction and operation of a smart grid. In this paper, we present the background and motivation of communication infrastructures in smart grid systems. We also summarize major requirements that smart grid communications must meet. From the experience of several industrial trials on smart grid with communication infrastructures, we expect that the traditional carbon fuel based power plants can cooperate with emerging distributed renewable energy such as wind, solar, etc, to reduce the carbon fuel consumption and consequent green house gas such as carbon dioxide emission. The consumers can minimize their expense on energy by adjusting their intelligent home appliance operations to avoid the peak hours and utilize the renewable energy instead. We further explore the challenges for a communication infrastructure as the part of a complex smart grid system. Since a smart grid system might have over millions of consumers and devices, the demand of its reliability and security is extremely critical. Through a communication infrastructure, a smart grid can improve power reliability and quality to eliminate electricity blackout. Security is a challenging issue since the on-going smart grid systems facing increasing vulnerabilities as more and more automation, remote monitoring/controlling and supervision entities are interconnected.

1,036 citations