scispace - formally typeset
Search or ask a question
Author

Sungho Kim

Other affiliations: Hong Kong Polytechnic University
Bio: Sungho Kim is an academic researcher from York University. The author has contributed to research in topics: Real image & Image restoration. The author has an hindex of 3, co-authored 3 publications receiving 139 citations. Previous affiliations of Sungho Kim include Hong Kong Polytechnic University.

Papers
More filters
Proceedings Article•DOI•
16 Jun 2019
TL;DR: The 3rd NTIRE challenge on single-image super-resolution (restoration of rich details in a low-resolution image) is reviewed with a focus on proposed solutions and results and the state-of-the-art in real-world single image super- resolution.
Abstract: This paper reviewed the 3rd NTIRE challenge on single-image super-resolution (restoration of rich details in a low-resolution image) with a focus on proposed solutions and results. The challenge had 1 track, which was aimed at the real-world single image super-resolution problem with an unknown scaling factor. Participants were mapping low-resolution images captured by a DSLR camera with a shorter focal length to their high-resolution images captured at a longer focal length. With this challenge, we introduced a novel real-world super-resolution dataset (RealSR). The track had 403 registered participants, and 36 teams competed in the final testing phase. They gauge the state-of-the-art in real-world single image super-resolution.

118 citations

Proceedings Article•DOI•
01 Jun 2020
TL;DR: This paper reviews the NTIRE 2020 challenge on real image denoising with focus on the newly introduced dataset, the proposed methods and their results, based on the SIDD benchmark.
Abstract: This paper reviews the NTIRE 2020 challenge on real image denoising with focus on the newly introduced dataset, the proposed methods and their results. The challenge is a new version of the previous NTIRE 2019 challenge on real image denoising that was based on the SIDD benchmark. This challenge is based on a newly collected validation and testing image datasets, and hence, named SIDD+. This challenge has two tracks for quantitatively evaluating image denoising performance in (1) the Bayer-pattern rawRGB and (2) the standard RGB (sRGB) color spaces. Each track ~250 registered participants. A total of 22 teams, proposing 24 methods, competed in the final phase of the challenge. The proposed methods by the participating teams represent the current state-of-the-art performance in image denoising targeting real noisy images. The newly collected SIDD+ datasets are publicly available at: https://bit.ly/siddplus_data.

72 citations

Posted Content•
TL;DR: The NTIRE 2020 challenge on real image denoising with focus on the newly introduced dataset, the proposed methods and their results is reviewed in this paper, where a total of 22 teams, proposing 24 methods, competed in the final phase of the challenge.
Abstract: This paper reviews the NTIRE 2020 challenge on real image denoising with focus on the newly introduced dataset, the proposed methods and their results. The challenge is a new version of the previous NTIRE 2019 challenge on real image denoising that was based on the SIDD benchmark. This challenge is based on a newly collected validation and testing image datasets, and hence, named SIDD+. This challenge has two tracks for quantitatively evaluating image denoising performance in (1) the Bayer-pattern rawRGB and (2) the standard RGB (sRGB) color spaces. Each track ~250 registered participants. A total of 22 teams, proposing 24 methods, competed in the final phase of the challenge. The proposed methods by the participating teams represent the current state-of-the-art performance in image denoising targeting real noisy images. The newly collected SIDD+ datasets are publicly available at: this https URL.

22 citations


Cited by
More filters
Book Chapter•DOI•
23 Aug 2020
TL;DR: MIRNet as mentioned in this paper proposes a multi-scale residual block containing several key elements: (a) parallel multi-resolution convolution streams for extracting mult-scale features, (b) information exchange across the multiresolution streams, (c) spatial and channel attention mechanisms for capturing contextual information, and (d) attention-based multiscale feature aggregation.
Abstract: With the goal of recovering high-quality image content from its degraded version, image restoration enjoys numerous applications, such as in surveillance, computational photography and medical imaging. Recently, convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task. Existing CNN-based methods typically operate either on full-resolution or on progressively low-resolution representations. In the former case, spatially precise but contextually less robust results are achieved, while in the latter case, semantically reliable but spatially less accurate outputs are generated. In this paper, we present an architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network and receiving strong contextual information from the low-resolution representations. The core of our approach is a multi-scale residual block containing several key elements: (a) parallel multi-resolution convolution streams for extracting multi-scale features, (b) information exchange across the multi-resolution streams, (c) spatial and channel attention mechanisms for capturing contextual information, and (d) attention based multi-scale feature aggregation. In a nutshell, our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details. Extensive experiments on five real image benchmark datasets demonstrate that our method, named as MIRNet, achieves state-of-the-art results for image denoising, super-resolution, and image enhancement. The source code and pre-trained models are available at https://github.com/swz30/MIRNet.

357 citations

Proceedings Article•DOI•
16 Jun 2019
TL;DR: It is found that the NTIRE 2019 challenges push the state-of-the-art in video deblurring and super-resolution, reaching compelling performance on the newly proposed REDS dataset.
Abstract: This paper introduces a novel large dataset for video deblurring, video super-resolution and studies the state-of-the-art as emerged from the NTIRE 2019 video restoration challenges. The video deblurring and video super-resolution challenges are each the first challenge of its kind, with 4 competitions, hundreds of participants and tens of proposed solutions. Our newly collected REalistic and Diverse Scenes dataset (REDS) was employed by the challenges. In our study, we compare the solutions from the challenges to a set of representative methods from the literature and evaluate them on our proposed REDS dataset. We find that the NTIRE 2019 challenges push the state-of-the-art in video deblurring and super-resolution, reaching compelling performance on our newly proposed REDS dataset.

328 citations

Proceedings Article•DOI•
Jianrui Cai1, Hui Zeng1, Hongwei Yong1, Zisheng Cao, Lei Zhang1 •
01 Oct 2019
TL;DR: Li et al. as mentioned in this paper proposed a Laplacian pyramid based kernel prediction network (LP-KPN), which efficiently learns per-pixel kernels to recover the HR image, which achieved better visual quality with sharper edges and finer textures on real-world scenes.
Abstract: Most of the existing learning-based single image super-resolution (SISR) methods are trained and evaluated on simulated datasets, where the low-resolution (LR) images are generated by applying a simple and uniform degradation (i.e., bicubic downsampling) to their high-resolution (HR) counterparts. However, the degradations in real-world LR images are far more complicated. As a consequence, the SISR models trained on simulated data become less effective when applied to practical scenarios. In this paper, we build a real-world super-resolution (RealSR) dataset where paired LR-HR images on the same scene are captured by adjusting the focal length of a digital camera. An image registration algorithm is developed to progressively align the image pairs at different resolutions. Considering that the degradation kernels are naturally non-uniform in our dataset, we present a Laplacian pyramid based kernel prediction network (LP-KPN), which efficiently learns per-pixel kernels to recover the HR image. Our extensive experiments demonstrate that SISR models trained on our RealSR dataset deliver better visual quality with sharper edges and finer textures on real-world scenes than those trained on simulated datasets. Though our RealSR dataset is built by using only two cameras (Canon 5D3 and Nikon D810), the trained model generalizes well to other camera devices such as Sony a7II and mobile phones.

318 citations

Proceedings Article•DOI•
01 Jun 2021
TL;DR: Non-local sparse attention (NLSA) as mentioned in this paper is designed to retain long-range modeling capability from non-local operation while enjoying robustness and high-efficiency of sparse representation, which partitions the input space into hash buckets of related features.
Abstract: Both Non-Local (NL) operation and sparse representation are crucial for Single Image Super-Resolution (SISR). In this paper, we investigate their combinations and propose a novel Non-Local Sparse Attention (NLSA) with dynamic sparse attention pattern. NLSA is designed to retain long-range modeling capability from NL operation while enjoying robustness and high-efficiency of sparse representation. Specifically, NLSA rectifies non-local attention with spherical locality sensitive hashing (LSH) that partitions the input space into hash buckets of related features. For every query signal, NLSA assigns a bucket to it and only computes attention within the bucket. The resulting sparse attention prevents the model from attending to locations that are noisy and less-informative, while reducing the computational cost from quadratic to asymptotic linear with respect to the spatial size. Extensive experiments validate the effectiveness and efficiency of NLSA. With a few non-local sparse attention modules, our architecture, called non-local sparse network (NLSN), reaches state-of-the-art performance for SISR quantitatively and qualitatively.

216 citations

Journal Article•DOI•
TL;DR: Deep convolutional networks–based super-resolution is a fast-growing field with numerous practical applications and this exposition extensively compare more than 30 state-of-the-art super-resolves.
Abstract: Deep convolutional networks–based super-resolution is a fast-growing field with numerous practical applications. In this exposition, we extensively compare more than 30 state-of-the-art super-resolution Convolutional Neural Networks (CNNs) over three classical and three recently introduced challenging datasets to benchmark single image super-resolution. We introduce a taxonomy for deep learning–based super-resolution networks that groups existing methods into nine categories including linear, residual, multi-branch, recursive, progressive, attention-based, and adversarial designs. We also provide comparisons between the models in terms of network complexity, memory footprint, model input and output, learning details, the type of network losses, and important architectural differences (e.g., depth, skip-connections, filters). The extensive evaluation performed shows the consistent and rapid growth in the accuracy in the past few years along with a corresponding boost in model complexity and the availability of large-scale datasets. It is also observed that the pioneering methods identified as the benchmarks have been significantly outperformed by the current contenders. Despite the progress in recent years, we identify several shortcomings of existing techniques and provide future research directions towards the solution of these open problems. Datasets and codes for evaluation are publicly available at https://github.com/saeed-anwar/SRsurvey.

162 citations