scispace - formally typeset
Search or ask a question
Author

Sunita Nayak

Other affiliations: VIT University
Bio: Sunita Nayak is an academic researcher from Indian Institute of Technology Kharagpur. The author has contributed to research in topics: Sericin & Fibroin. The author has an hindex of 11, co-authored 14 publications receiving 677 citations. Previous affiliations of Sunita Nayak include VIT University.
Topics: Sericin, Fibroin, SILK, Bombyx mori, Antheraea mylitta

Papers
More filters
Journal ArticleDOI
TL;DR: Diversely designed nonmulberry matrices provide an array of new cutting age technologies, which is unattainable with the current synthetic materials that lack biodegradability and biocompatibility.
Abstract: The silk produced by silkworms are biopolymers and can be classified into two types--mulberry and nonmulberry. Mulberry silk of silkworm Bombyx mori has been extensively explored and used for century old textiles and sutures. But for the last few decades it is being extensively exploited for biomedical applications. However, the transformation of nonmulberry silk from being a textile commodity to biomaterials is relatively new. Within a very short period of time, the combination of load bearing capability and tensile strength of nonmulberry silk has been equally envisioned for bone, cartilage, adipose, and other tissue regeneration. Adding to its advantage is its diverse morphology, including macro to nano architectures with controllable degradation and biocompatibility yields novel natural material systems in vitro. Its follow on applications involve sustained release of model compounds and anticancer drugs. Its 3D cancer models provide compatible microenvironment systems for better understanding of the cancer progression mechanism and screening of anticancer compounds. Diversely designed nonmulberry matrices thus provide an array of new cutting age technologies, which is unattainable with the current synthetic materials that lack biodegradability and biocompatibility. Scientific exploration of nonmulberry silk in tissue engineering, regenerative medicine, and biotechnological applications promises advancement of sericulture industries in India and China, largest nonmulberry silk producers of the world. This review discusses the prospective biomedical applications of nonmulberry silk proteins as natural biomaterials.

170 citations

Journal ArticleDOI
TL;DR: These newer strategies expand the versatility of sutures from being used as just a physical entity approximating opposing tissues to a more biologically active component enabling delivery of drugs and cells to the desired site with immense application potential in both therapeutics and diagnostics.
Abstract: Surgical sutures are used to facilitate closure and healing of surgical- or trauma-induced wounds by upholding tissues together to facilitate healing process. There is a wide range of suture materials for medical purpose and the main types include absorbable and nonabsorbable. Recently, there is a growth in the development of classes of suture materials based on their properties and capabilities to improve tissue approximation and wound closure. This review outlines and discusses the current and emerging trends in suture technology including knotless barbed sutures, antimicrobial sutures, bio-active sutures such as drug-eluting and stem cells seeded sutures, and smart sutures including elastic, and electronic sutures. These newer strategies expand the versatility of sutures from being used as just a physical entity approximating opposing tissues to a more biologically active component enabling delivery of drugs and cells to the desired site with immense application potential in both therapeutics and diagnostics. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1544-1559, 2016.

127 citations

Journal ArticleDOI
TL;DR: The findings demonstrate that the sericin immobilized titanium surfaces are potentially useful bioactive coated materials for titanium-based medical implants.

98 citations

Journal ArticleDOI
TL;DR: It is revealed that silk sericin protein can be used as a biocompatible natural biopolymer for various applications in the biomedical field.
Abstract: Silk sericin protein is a natural, hydrophilic, macromolecular glycoprotein mainly synthesized in the middle silk gland of the silkworm. It constitutes 25-30% of the silk cocoon. Sericin proteins have antioxidant, antimicrobial, UV-resistant properties, promote wound healing and support cell proliferation even in serum-free media. Most of the sericin is discarded as waste in silk processing industries. This study aims at improving the mechanical strength and stability of sericin extracted from the silk cocoons during processing and utilize it as a biocompatible natural biopolymer in biomedical applications. Crosslinked sericin membranes, from the cocoon of non-mulberry tropical silkworm, Antheraea mylitta, were prepared using gluteraldehyde as the crosslinking agent. Physical and structural characteristics of the membranes were analyzed using scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy and X-ray diffraction along with swelling and degradation studies. The secondary structure of the membrane indicates that crosslinking provides a more integrated structure that significantly improves the stability and mechanical strength of the membranes. In vitro cytocompatibility of the membranes was evaluated by MTT assay and cell cycle analysis of feline fibroblast cells. The adherence, growth and proliferation patterns of cells on membranes were assessed by confocal microscopy, which demonstrated that the latter is non-toxic and supports cell growth. Cell cycle analyses indicate cytocompatibility with normal cell cycle pattern. This study reveals that silk sericin protein can be used as a biocompatible natural biopolymer for various applications in the biomedical field.

86 citations

Journal ArticleDOI
TL;DR: The findings indicate that complete IL removal from the fabricated hydrogels results in a positive hASCs cellular response, and provides a unique opportunity to broaden the processability and application of silk fibroin obtained from A. mylitta cocoons for regenerative medicine, namely cartilage regeneration.

78 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The present article discusses the processing of silk fibroin into different forms of biomaterials followed by their uses in regeneration of different tissues.

994 citations

Journal Article
TL;DR: In this article, B. mori silk fibroin films were studied thermally using temperature-modulated differential scanning calorimetry (TMDSC) to obtain the reversing heat capacity.
Abstract: We report a study of self-assembled beta-pleated sheets in B. mori silk fibroin films using thermal analysis and infrared spectroscopy. B. mori silk fibroin may stand as an exemplar of fibrous proteins containing crystalline beta-sheets. Materials were prepared from concentrated solutions (2−5 wt % fibroin in water) and then dried to achieve a less ordered state without beta-sheets. Crystallization of beta-pleated sheets was effected either by heating the films above the glass transition temperature (Tg) and holding isothermally or by exposure to methanol. The fractions of secondary structural components including random coils, alpha-helices, beta-pleated sheets, turns, and side chains were evaluated using Fourier self-deconvolution (FSD) of the infrared absorbance spectra. The silk fibroin films were studied thermally using temperature-modulated differential scanning calorimetry (TMDSC) to obtain the reversing heat capacity. The increment of the reversing heat capacity ΔCp0(Tg) at the glass transition fo...

837 citations

Journal ArticleDOI
TL;DR: An overview on the available natural polymer/calcium phosphate nanocomposite materials, their design, and properties is presented.
Abstract: Tissue engineering and regenerative medicine has been providing exciting technologies for the development of functional substitutes aimed to repair and regenerate damaged tissues and organs. Inspired by the hierarchical nature of bone, nanostructured biomaterials are gaining a singular attention for tissue engineering, owing their ability to promote cell adhesion and proliferation, and hence new bone growth, compared with conventional microsized materials. Of particular interest are nanocomposites involving biopolymeric matrices and bioactive nanosized fillers. Biodegradability, high mechanical strength, and osteointegration and formation of ligamentous tissue are properties required for such materials. Biopolymers are advantageous due to their similarities with extracellular matrices, specific degradation rates, and good biological performance. By its turn, calcium phosphates possess favorable osteoconductivity, resorbability, and biocompatibility. Herein, an overview on the available natural polymer/calcium phosphate nanocomposite materials, their design, and properties is presented. Scaffolds, hydrogels, and fibers as biomimetic strategies for tissue engineering, and processing methodologies are described. The specific biological properties of the nanocomposites, as well as their interaction with cells, including the use of bioactive molecules, are highlighted. Nanocomposites in vivo studies using animal models are also reviewed and discussed.

691 citations

Journal ArticleDOI
TL;DR: In this article, the current state of wound healing and wound management products, with emphasis on the demand for more advanced forms of wound therapy and some of the current challenges and driving forces behind this demand, are reviewed.

580 citations

Journal ArticleDOI
TL;DR: This review discusses and summarizes recent advancements in processing SF, focusing on different fabrication and functionalization methods and their application to grow bone tissue in vitro and in vivo, which provides an impressive toolbox and allows silk fibroin scaffolds to be tailored to specific applications.

560 citations