scispace - formally typeset
Search or ask a question
Author

Sunwoo Lee

Bio: Sunwoo Lee is an academic researcher from Chonnam National University. The author has contributed to research in topics: Aryl & Coupling reaction. The author has an hindex of 40, co-authored 250 publications receiving 5898 citations. Previous affiliations of Sunwoo Lee include Korea University & Pohang University of Science and Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: Mechanistic studies showed that the reaction involves rate-limiting oxidative addition of aryl halide, and use of new, optically active heterocyclic carbene ligands gave substantial enantioselectivity in formation of an alpha,alpha-disubstituted oxindole.
Abstract: Catalysts comprised Pd(OAc)2 and either PCy3 or sterically hindered N-heterocyclic carbene ligands provide fast rates for a palladium-catalyzed synthesis of oxindoles by amide α-arylation. This catalyst system allowed for room-temperature reactions in some cases and reactions of aryl chlorides at 70 °C. Most important, reactions occurred in high yields under mild conditions to form the quaternary carbon in α,α-disubstituted oxindoles. The combined inter- and intramolecular reaction afforded an efficient synthetic method for formation of α-aryloxindole derivatives. Surprisingly, catalysts containing tert-butylphosphine ligands, which have been most reactive for ketone arylations, were less active than those containing PCy3. Use of new, optically active heterocyclic carbene ligands gave substantial enantioselectivity in formation of an α,α-disubstituted oxindole. In contrast, a variety of optically active phosphine ligands that were tested gave poor enantioselectivity. Mechanistic studies showed that the re...

483 citations

Journal ArticleDOI
TL;DR: A catalytic system for the mild amination of aryl chlorides is described, which consists of a Pd(0) precursor and a dihydroimidazoline carbene ligand generated in situ from its protonated tetrafluoroborate salt.

276 citations

Journal ArticleDOI
TL;DR: Using propiolic acid as a difunctional alkyne and using the consecutive reactions of the Sonogashira reaction and the decarboxylative coupling, unsymmetrically substituted diaryl alkynes were obtained in moderate to good yield.

261 citations

Journal ArticleDOI
TL;DR: Improved protocols for the selective monoarylation of tert-butyl acetate and the efficient arylation of alpha,alpha-disubstituted esters were developed with LiNCy(2) as base and P(t-Bu)(3) as ligand.
Abstract: A catalytic amount of Pd(dba)(2) ligated by either carbene precursor N,N'-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazolium (1) or P(t-Bu)(3) mediated the coupling of aryl halides and ester enolates to produce alpha-aryl esters in high yields at room temperature. The reaction was highly tolerant of functionalities and substitution patterns on the aryl halide. Improved protocols for the selective monoarylation of tert-butyl acetate and the efficient arylation of alpha,alpha-disubstituted esters were developed with LiNCy(2) as base and P(t-Bu)(3) as ligand. In addition, tert-butyl esters, such as those of Naproxen and Flurbiprofen, were prepared from tert-butyl propionate and aryl bromides in high yields in the presence of Pd(dba)(2) and the hindered, saturated heterocyclic carbene ligand precursor.

203 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: N-Heterocyclic carbenes have become universal ligands in organometallic and inorganic coordination chemistry as mentioned in this paper, and they not only bind to any transition metal, be it in low or high oxidation states, but also to main group elements such as beryllium, sulfur, and iodine.
Abstract: N-Heterocyclic carbenes have become universal ligands in organometallic and inorganic coordination chemistry. They not only bind to any transition metal, be it in low or high oxidation states, but also to main group elements such as beryllium, sulfur, and iodine. Because of their specific coordination chemistry, N-heterocyclic carbenes both stabilize and activate metal centers in quite different key catalytic steps of organic syntheses, for example, C-H activation, C-C, C-H, C-O, and C-N bond formation. There is now ample evidence that in the new generation of organometallic catalysts the established ligand class of organophosphanes will be supplemented and, in part, replaced by N-heterocyclic carbenes. Over the past few years, this chemistry has been the field of vivid scientific competition, and yielded previously unexpected successes in key areas of homogeneous catalysis. From the work in numerous academic laboratories and in industry, a revolutionary turning point in oraganometallic catalysis is emerging.

3,388 citations

Journal ArticleDOI
TL;DR: New methods for the synthesis of complexes with N-heterocyclic carbene ligands such as the oxidative addition or the metal atom template controlled cyclized isocyanides have been developed recently.
Abstract: The chemistry of heterocyclic carbenes has experienced a rapid development over the last years. In addition to the imidazolin-2-ylidenes, a large number of cyclic diaminocarbenes with different ring sizes have been described. Aside from diaminocarbenes, P-heterocyclic carbenes, and derivatives with only one, or even no heteroatom within the carbene ring are known. New methods for the synthesis of complexes with N-heterocyclic carbene ligands such as the oxidative addition or the metal atom template controlled cyclization of β-functionalized isocyanides have been developed recently. This review summarizes the new developments regarding the synthesis of N-heterocyclic carbenes and their metal complexes.

2,454 citations

Journal ArticleDOI
TL;DR: Investigations revealed that the conversion of C-H bonds to C-B bonds was both thermodynamically and kinetically favorable and highlighted the accessible barriers for C- H bond cleavage and B-C bond formation during the borylation of alkanes and arenes.
Abstract: A number of studies were conducted to demonstrate C-H activation for the construction of C-B bonds. Investigations revealed that the conversion of C-H bonds to C-B bonds was both thermodynamically and kinetically favorable. The reaction at a primary C-H bond of methane or a higher alkene B 2(OR)4 formed an alkylboronate ester R' -B(OR)2 and the accompanying borane H-B(OR2. The ester and the borane were formed on the basis of calculated bond energies for methylboronates and dioaborolanes. The rates of key steps along the reaction pathway for the conversion of a C-H bond in an alkane or arene to the C-B bond in an alkyl or arylboronate ester were favorable. These studies also highlighted the accessible barriers for C-H bond cleavage and B-C bond formation during the borylation of alkanes and arenes.

2,108 citations

Journal ArticleDOI
TL;DR: This Perspective highlights the potential of metal-catalysed C-H bond activation reactions, which now extend beyond the field of traditional synthetic organic chemistry, and are more atom- and step-economical than previous methods.
Abstract: The beginning of the twenty-first century has witnessed significant advances in the field of C-H bond activation, and this transformation is now an established piece in the synthetic chemists' toolbox. This methodology has the potential to be used in many different areas of chemistry, for example it provides a perfect opportunity for the late-stage diversification of various kinds of organic scaffolds, ranging from relatively small molecules like drug candidates, to complex polydisperse organic compounds such as polymers. In this way, C-H activation approaches enable relatively straightforward access to a plethora of analogues or can help to streamline the lead-optimization phase. Furthermore, synthetic pathways for the construction of complex organic materials can now be designed that are more atom- and step-economical than previous methods and, in some cases, can be based on synthetic disconnections that are just not possible without C-H activation. This Perspective highlights the potential of metal-catalysed C-H bond activation reactions, which now extend beyond the field of traditional synthetic organic chemistry.

1,838 citations

Journal ArticleDOI
TL;DR: An overview of Pd-catalyzed N-arylation reactions found in both basic and applied chemical research from 2008 to the present is provided.
Abstract: Pd-catalyzed cross-coupling reactions that form C–N bonds have become useful methods to synthesize anilines and aniline derivatives, an important class of compounds throughout chemical research. A key factor in the widespread adoption of these methods has been the continued development of reliable and versatile catalysts that function under operationally simple, user-friendly conditions. This review provides an overview of Pd-catalyzed N-arylation reactions found in both basic and applied chemical research from 2008 to the present. Selected examples of C–N cross-coupling reactions between nine classes of nitrogen-based coupling partners and (pseudo)aryl halides are described for the synthesis of heterocycles, medicinally relevant compounds, natural products, organic materials, and catalysts.

1,709 citations