scispace - formally typeset
Search or ask a question
Author

Surajit Ghosh

Bio: Surajit Ghosh is an academic researcher from International Water Management Institute. The author has contributed to research in topics: Tubulin & Microtubule. The author has an hindex of 24, co-authored 138 publications receiving 2146 citations. Previous affiliations of Surajit Ghosh include Indian Space Research Organisation & International Center for Agricultural Research in the Dry Areas.
Topics: Tubulin, Microtubule, Medicine, Chemistry, Cancer cell


Papers
More filters
Journal ArticleDOI
14 Jan 2014-Langmuir
TL;DR: Interestingly, MTT assay of these gelator molecules shows almost 100% cell viability of this peptide gelator, indicating its noncytotoxicity.
Abstract: A new synthetic tripeptide-based hydrogel has been discovered at physiological pH and temperature. This hydrogel has been thoroughly characterized using different techniques including field emission scanning electron microscopic (FE-SEM) and high-resolution transmission electron microscopic (HR-TEM) imaging, small- and wide-angle X-ray diffraction analyses, FT-IR, circular dichroism, and rheometric analyses. Moreover, this gel exhibits thixotropy and injectability. This hydrogel has been used for entrapment and sustained release of an antibiotic vancomycin and vitamin B12 at physiological pH and temperature for about 2 days. Interestingly, MTT assay of these gelator molecules shows almost 100% cell viability of this peptide gelator, indicating its noncytotoxicity.

140 citations

Journal ArticleDOI
TL;DR: A brief outline of the currently known neurological manifestations of COVID-19 is provided and some probable ways to design therapeutic strategies to overcome the present global crisis are discussed.
Abstract: The novel coronavirus SARS-CoV-2, which was identified after a recent outbreak in Wuhan, China, in December 2019, has kept the whole world in tenterhooks due to its severe life-threatening nature of the infection. The virus is unlike its previous counterparts, SARS-CoV and MERS-CoV, or anything the world has encountered before both in terms of virulence and severity of the infection. If scientific reports relevant to the SARS-CoV-2 virus are noted, it can be seen that the virus owes much of its killer properties to its unique structure that has a stronger binding affinity with the human angiotensin-converting enzyme 2 (hACE2) protein, which the viruses utilize as an entry point to gain accesses to its hosts. Recent reports suggest that it is not just the lung that the virus may be targeting; the human brain may soon emerge as the new abode of the virus. Already instances of patients with COVID-19 have been reported with mild (anosmia and ageusia) to severe (encephalopathy) neurological manifestations, and if that is so, then it gives us more reasons to be frightened of this killer virus. Keeping in mind that the situation does not worsen from here, immediate awareness and more thorough research regarding the neuroinvasive nature of the virus is the immediate need of the hour. Scientists globally also need to up their game to design more specific therapeutic strategies with the available information to counteract the pandemic. In this Viewpoint, we provide a brief outline of the currently known neurological manifestations of COVID-19 and discuss some probable ways to design therapeutic strategies to overcome the present global crisis.

130 citations

Journal ArticleDOI
TL;DR: It has been found that these antibacterial noncytotoxic hydrogels exhibit proteolytic resistance toward the enzymes proteinase K and chymotrypsin.

110 citations

Journal ArticleDOI
TL;DR: Synthetic tripeptide based noncytotoxic hydrogelators have been discovered for releasing an anticancer drug at physiological pH and temparature and successfully modulated by incorporating d-amino acid residues, indicating their potential use for drug delivery in the future.

95 citations


Cited by
More filters
01 Dec 1991
TL;DR: In this article, self-assembly is defined as the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds.
Abstract: Molecular self-assembly is the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds. Molecular self-assembly is ubiquitous in biological systems and underlies the formation of a wide variety of complex biological structures. Understanding self-assembly and the associated noncovalent interactions that connect complementary interacting molecular surfaces in biological aggregates is a central concern in structural biochemistry. Self-assembly is also emerging as a new strategy in chemical synthesis, with the potential of generating nonbiological structures with dimensions of 1 to 10(2) nanometers (with molecular weights of 10(4) to 10(10) daltons). Structures in the upper part of this range of sizes are presently inaccessible through chemical synthesis, and the ability to prepare them would open a route to structures comparable in size (and perhaps complementary in function) to those that can be prepared by microlithography and other techniques of microfabrication.

2,591 citations

Journal Article
TL;DR: In this paper, an inventory of air pollutant emissions in Asia in the year 2000 is developed to support atmospheric modeling and analysis of observations taken during the TRACE-P experiment funded by the National Aeronautics and Space Administration (NASA) and the ACE-Asia experiment, in which emissions are estimated for all major anthropogenic sources, including biomass burning, in 64 regions of Asia.
Abstract: [i] An inventory of air pollutant emissions in Asia in the year 2000 is developed to support atmospheric modeling and analysis of observations taken during the TRACE-P experiment funded by the National Aeronautics and Space Administration (NASA) and the ACE-Asia experiment funded by the National Science Foundation (NSF) and the National Oceanic and Atmospheric Administration (NOAA). Emissions are estimated for all major anthropogenic sources, including biomass burning, in 64 regions of Asia. We estimate total Asian emissions as follows: 34.3 Tg SO 2 , 26.8 Tg NO x , 9870 Tg CO 2 , 279 Tg CO, 107 Tg CH 4 , 52.2 Tg NMVOC, 2.54 Tg black carbon (BC), 10.4 Tg organic carbon (OC), and 27.5 Tg NH 3 . In addition, NMVOC are speciated into 19 subcategories according to functional groups and reactivity. Thus we are able to identify the major source regions and types for many of the significant gaseous and particle emissions that influence pollutant concentrations in the vicinity of the TRACE-P and ACE-Asia field measurements. Emissions in China dominate the signature of pollutant concentrations in this region, so special emphasis has been placed on the development of emission estimates for China. China's emissions are determined to be as follows: 20.4 Tg SO 2 , 11.4 Tg NO x , 3820 Tg CO 2 , 116 Tg CO, 38.4 Tg CH 4 , 17.4 Tg NMVOC, 1.05 Tg BC, 3.4 Tg OC, and 13.6 Tg NH 3 . Emissions are gridded at a variety of spatial resolutions from 1° × 1° to 30 s x 30 s, using the exact locations of large point sources and surrogate GIS distributions of urban and rural population, road networks, landcover, ship lanes, etc. The gridded emission estimates have been used as inputs to atmospheric simulation models and have proven to be generally robust in comparison with field observations, though there is reason to think that emissions of CO and possibly BC may be underestimated. Monthly emission estimates for China are developed for each species to aid TRACE-P and ACE-Asia data interpretation. During the observation period of March/ April, emissions are roughly at their average values (one twelfth of annual). Uncertainties in the emission estimates, measured as 95% confidence intervals, range from a low of ±16% for SO 2 to a high of ±450% for OC.

1,828 citations

01 Feb 1995
TL;DR: In this paper, the unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio using DFT, MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set.
Abstract: : The unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio. Harmonic force fields are obtained using Density Functional Theory (DFT), MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set. DFT calculations use the Local Spin Density Approximation (LSDA), BLYP, and Becke3LYP (B3LYP) density functionals. Mid-IR spectra predicted using LSDA, BLYP, and B3LYP force fields are of significantly different quality, the B3LYP force field yielding spectra in clearly superior, and overall excellent, agreement with experiment. The MP2 force field yields spectra in slightly worse agreement with experiment than the B3LYP force field. The SCF force field yields spectra in poor agreement with experiment.The basis set dependence of B3LYP force fields is also explored: the 6-31G* and TZ2P basis sets give very similar results while the 3-21G basis set yields spectra in substantially worse agreements with experiment. jg

1,652 citations

Journal ArticleDOI
TL;DR: This review focuses on various potential applications of supramolecular hydrogels as molecular biomaterials, classified by their applications in cell cultures, tissue engineering, cell behavior, imaging, and unique applications of hydrogelators.
Abstract: In this review we intend to provide a relatively comprehensive summary of the work of supramolecular hydrogelators after 2004 and to put emphasis particularly on the applications of supramolecular hydrogels/hydrogelators as molecular biomaterials. After a brief introduction of methods for generating supramolecular hydrogels, we discuss supramolecular hydrogelators on the basis of their categories, such as small organic molecules, coordination complexes, peptides, nucleobases, and saccharides. Following molecular design, we focus on various potential applications of supramolecular hydrogels as molecular biomaterials, classified by their applications in cell cultures, tissue engineering, cell behavior, imaging, and unique applications of hydrogelators. Particularly, we discuss the applications of supramolecular hydrogelators after they form supramolecular assemblies but prior to reaching the critical gelation concentration because this subject is less explored but may hold equally great promise for helping ...

1,395 citations

Journal ArticleDOI
TL;DR: Progressive alternate approaches including probiotics, antibodies, and vaccines have shown promising results in trials that suggest the role of these alternatives as preventive or adjunct therapies in future.
Abstract: The advent of multidrug resistance among pathogenic bacteria is imperiling the worth of antibiotics, which have previously transformed medical sciences. The crisis of antimicrobial resistance has been ascribed to the misuse of these agents and due to unavailability of newer drugs attributable to exigent regulatory requirements and reduced financial inducements. Comprehensive efforts are needed to minimize the pace of resistance by studying emergent microorganisms, resistance mechanisms, and antimicrobial agents. Multidisciplinary approaches are required across health care settings as well as environment and agriculture sectors. Progressive alternate approaches including probiotics, antibodies, and vaccines have shown promising results in trials that suggest the role of these alternatives as preventive or adjunct therapies in future.

1,328 citations