scispace - formally typeset
Search or ask a question
Author

Surasawadee Ausavarat

Bio: Surasawadee Ausavarat is an academic researcher from King Chulalongkorn Memorial Hospital. The author has contributed to research in topics: Mutation & SNP array. The author has an hindex of 7, co-authored 7 publications receiving 195 citations. Previous affiliations of Surasawadee Ausavarat include Mahidol University & Chulalongkorn University.

Papers
More filters
Journal ArticleDOI
TL;DR: An X-linked recessive form of OI caused by defects in MBTPS2, which encodes site-2 metalloprotease (S2P) is identified, providing evidence that RIP plays a fundamental role in normal bone development.
Abstract: Osteogenesis imperfecta (OI) is a collagen-related bone dysplasia. We identified an X-linked recessive form of OI caused by defects in MBTPS2, which encodes site-2 metalloprotease (S2P). MBTPS2 missense mutations in two independent kindreds with moderate/severe OI cause substitutions at highly conserved S2P residues. Mutant S2P has normal stability, but impaired functioning in regulated intramembrane proteolysis (RIP) of OASIS, ATF6 and SREBP transcription factors, consistent with decreased proband secretion of type I collagen. Further, hydroxylation of the collagen lysine residue (K87) critical for crosslinking is reduced in proband bone tissue, consistent with decreased lysyl hydroxylase 1 in proband osteoblasts. Reduced collagen crosslinks presumptively undermine bone strength. Also, proband osteoblasts have broadly defective differentiation. These mutations provide evidence that RIP plays a fundamental role in normal bone development.

102 citations

Journal ArticleDOI
TL;DR: Genetic analysis by genome-wide linkage study (GWLS) showed that the disease-associated region in the Thai family was linked to a newly identified locus on chromosome 3q26.32-3q28, representing the fourth chromosomal region for BAFME.
Abstract: Benign Adult Familial Myoclonic Epilepsy (BAFME) is an autosomal dominant disorder characterized by adult-onset cortical tremor or action myoclonus predominantly in the upper limbs, and generalized seizures. We investigated a Thai BAFME family. Clinical and electrophysiological studies revealed that 13 were affected with BAFME. There were a total of 24 individuals studied. Genetic analysis by genome-wide linkage study (GWLS) was performed using 400 microsatellite markers and excluded linkage of the previous BAFME loci, 8q23.3-q24.1, and 2p11.1-q12.2. GWLS showed that the disease-associated region in our Thai family was linked to a newly identified locus on chromosome 3q26.32-3q28. This locus represents the fourth chromosomal region for BAFME.

53 citations

Journal ArticleDOI
TL;DR: A Thai woman with CFNS is reported, in whom a novel mutation was discovered: c.685_686insG, in exon 5 of EFNB1, which is the first insertion and the most 3′ point mutation inEFNB1 reported to date.
Abstract: Craniofrontonasal syndrome (CFNS) is an X-linked disorder whose main clinical manifestations include coronal craniosynostosis and frontonasal dysplasia. Very recently, CFNS was shown to be caused by mutations in EFNB1 encoding ephrin-B1, and 20 mutations have been described. We report a Thai woman with CFNS, in whom a novel mutation was discovered: c.685_686insG, in exon 5 of EFNB1. It is the first insertion and the most 3′ point mutation in EFNB1 reported to date. The mutation is expected to result in a truncated ephrin-B1 of 230 amino acids, composed of a nearly complete extracellular part of ephrin-B1 with no transmembrane and cytoplasmic domains. This truncated protein might become a soluble form of the ligand, which previously was shown to be able to bind to receptors, but fail to cluster and to activate them—in other words, acting as a dominant negative protein. Nonetheless, further studies to detect the protein are needed to substantiate the hypothesis.

23 citations

Journal ArticleDOI
TL;DR: Mutation analysis by PCR-sequencing the entire coding region of EBP successfully revealed two potentially pathogenic, novel mutations, c.616G-->T and c.382delC, causing CDPX2.
Abstract: Conradi-Hunermann-Happle syndrome, also known as chondrodysplasia punctata type 2 (CDPX2), is an X-linked dominant disorder characterized by skin defects, skeletal and ocular abnormalities. CDPX2 was shown to be caused by mutations in the gene encoding emopamil binding protein (EBP). At least 58 different mutations have been described. Here we present clinical and molecular findings in two unrelated Thai girls with CDPX2. Mutation analysis by PCR-sequencing the entire coding region of EBP successfully revealed two potentially pathogenic, novel mutations, c.616G→T and c.382delC. This study has expanded the spectrum of the EBP gene mutations causing CDPX2.

13 citations

Journal ArticleDOI
TL;DR: It is demonstrated for the first time, that the possible association of PTPRF with syndromic amastia is demonstrated, making it a prime candidate to investigate for its spatial and temporal roles in human breast development.
Abstract: The presence of mammary glands distinguishes mammals from other organisms. Despite significant advances in defining the signaling pathways responsible for mammary gland development in mice, our understanding of human mammary gland development remains rudimentary. Here, we identified a woman with bilateral amastia, ectodermal dysplasia and unilateral renal agenesis. She was found to have a chromosomal balanced translocation, 46,XX,t(1;20)(p34.1;q13.13). In addition to characterization of her clinical and cytogenetic features, we successfully identified the interrupted gene and studied its consequences. Characterization of the breakpoints was performed by molecular cytogenetic techniques. The interrupted gene was further analyzed using quantitative real-time PCR and western blotting. Mutation analysis and high-density SNP array were carried out in order to find a pathogenic mutation. Allele segregations were obtained by haplotype analysis. We enabled to identify its breakpoint on chromosome 1 interrupting the protein tyrosine receptor type F gene (PTPRF). While the patient's mother and sisters also harbored the translocated chromosome, their non-translocated chromosomes 1 were different from that of the patient. Although a definite pathogenic mutation on the paternal allele could not be identified, PTPRF's RNA and protein of the patient were significantly less than those of her unaffected family members. Although ptprf has been shown to involve in murine mammary gland development, no evidence has incorporated PTPRF in human organ development. We, for the first time, demonstrated the possible association of PTPRF with syndromic amastia, making it a prime candidate to investigate for its spatial and temporal roles in human breast development.

11 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is shown that abnormal expansions of TTTCA and TTTTA repeats in intron 4 of SAMD12 cause benign adult familial myoclonic epilepsy (BAFME), and RNA toxicity as the mechanism underlying disease pathogenesis is identified.
Abstract: Epilepsy is a common neurological disorder, and mutations in genes encoding ion channels or neurotransmitter receptors are frequent causes of monogenic forms of epilepsy. Here we show that abnormal expansions of TTTCA and TTTTA repeats in intron 4 of SAMD12 cause benign adult familial myoclonic epilepsy (BAFME). Single-molecule, real-time sequencing of BAC clones and nanopore sequencing of genomic DNA identified two repeat configurations in SAMD12. Intriguingly, in two families with a clinical diagnosis of BAFME in which no repeat expansions in SAMD12 were observed, we identified similar expansions of TTTCA and TTTTA repeats in introns of TNRC6A and RAPGEF2, indicating that expansions of the same repeat motifs are involved in the pathogenesis of BAFME regardless of the genes in which the expanded repeats are located. This discovery that expansions of noncoding repeats lead to neuronal dysfunction responsible for myoclonic tremor and epilepsy extends the understanding of diseases with such repeat expansion.

212 citations

Journal ArticleDOI
TL;DR: Findings are reviewed, which define new roles for osteoclasts and OCPs in the growing field of osteoimmunology and in common pathologic conditions in which bone resorption is increased.
Abstract: Osteoclasts are the cells that degrade bone to initiate normal bone remodeling and mediate bone loss in pathologic conditions by increasing their resorptive activity. They are derived from precursors in the myeloid/ monocyte lineage that circulate in the blood after their formation in the bone marrow. These osteoclast precursors (OCPs) are attracted to sites on bone surfaces destined for resorption and fuse with one another to form the multinucleated cells that resorb calcified matrixes under the influence of osteoblastic cells in bone marrow. Recent studies have identified functions for OCPs and osteoclasts in and around bone other than bone resorption. For example, they regulate the differentiation of osteoblast precursors and the movement of hematopoietic stem cells from the bone marrow to the bloodstream; they participate in immune responses, and secrete cytokines that can affect their own functions and those of other cells in inflammatory and neoplastic processes affecting bone. Here, we review these findings, which define new roles for osteoclasts and OCPs in the growing field of osteoimmunology and in common pathologic conditions in which bone resorption is increased.

148 citations

Journal ArticleDOI
TL;DR: The state of the art of MCSs as tissue-engineered scaffolds for acceleration of bone repair is summarized, including their fabrication methods, critical factors for osteogenesis regulation, current opportunities and challenges in the future.

138 citations

Book ChapterDOI
01 Jan 2008
TL;DR: This chapter will review the chromosomal regions associated with syndromic forms of the malformation, the genes in which a large number of mutations have been reported by independent studies, and the molecular mechanisms and genotype-phenotype correlations of such mutations.
Abstract: Craniosynostosis is a very heterogeneous group of disorders, in the etiology of which genetics play an important role. Chromosomal alterations are important causative mechanisms of the syndromic forms of craniosynostosis accounting for at least 10% of the cases. Mutations in 7 genes are unequivocally associated with mendelian forms of syndromic craniosynostosis: FGFR1, FGFR2, FGFR3, TWIST1, EFNB1, MSX2 and RAB23. Mutations in 4 other genes, FBN1, POR, TGFBR1 and TGFBR2, are also associated with craniosynostosis, but not causing the major clinical feature of the phenotype or with an apparently low penetrance. The identification of these genes represented a great advance in the dissection of the genetics of craniosynostosis in the last 15 years, and today they explain the etiology of about 30% of the syndromic cases. The paucity in the identification of genes associated with this defect has partly been due to the rarity of familial cases. In contrast, very little is known about the molecular and cellular factors leading to nonsyndromic forms of craniosynostosis. Revealing the molecular pathology of craniosynostosis is also of great value for diagnosis, prognosis and genetic counseling. This chapter will review (1) the chromosomal regions associated with syndromic forms of the malformation, (2) the genes in which a large number of mutations have been reported by independent studies (FGFR1, FGFR2, FGFR3, TWIST1 and EFNB1) and (3) the molecular mechanisms and genotype-phenotype correlations of such mutations.

131 citations

Journal ArticleDOI
TL;DR: An X-linked recessive form of OI caused by defects in MBTPS2, which encodes site-2 metalloprotease (S2P) is identified, providing evidence that RIP plays a fundamental role in normal bone development.
Abstract: Osteogenesis imperfecta (OI) is a collagen-related bone dysplasia. We identified an X-linked recessive form of OI caused by defects in MBTPS2, which encodes site-2 metalloprotease (S2P). MBTPS2 missense mutations in two independent kindreds with moderate/severe OI cause substitutions at highly conserved S2P residues. Mutant S2P has normal stability, but impaired functioning in regulated intramembrane proteolysis (RIP) of OASIS, ATF6 and SREBP transcription factors, consistent with decreased proband secretion of type I collagen. Further, hydroxylation of the collagen lysine residue (K87) critical for crosslinking is reduced in proband bone tissue, consistent with decreased lysyl hydroxylase 1 in proband osteoblasts. Reduced collagen crosslinks presumptively undermine bone strength. Also, proband osteoblasts have broadly defective differentiation. These mutations provide evidence that RIP plays a fundamental role in normal bone development.

102 citations