scispace - formally typeset
Search or ask a question
Author

Surekha Mandal

Bio: Surekha Mandal is an academic researcher from Bose Institute. The author has contributed to research in topics: Quenching (fluorescence) & Spodoptera litura. The author has an hindex of 2, co-authored 2 publications receiving 63 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A novel trypsin inhibitor from Indian mustard Brassica juncea that is unique in being the precursor of a 2S seed storage protein that can be used in transforming seed crops for protection to their vegetative parts and early seed stages, when insect damage is maximal.

53 citations

Journal ArticleDOI
Manasi Ghose1, Surekha Mandal1, Debjani Roy1, R. K. Mandal1, Gautam Basu1 
TL;DR: A remarkable blue shift in fluorescence upon bimolecular quenching in the single‐tryptophan thermostable protein Bj2S, the 2S seed albumin from Brassica juncea, at ambient temperature and viscosity is reported.

11 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Initial indications from deployment of transgenics with insect resistance in diverse cropping systems in USA, Canada, Argentina, China, India, Australia, and South Africa suggest that single transgene products in standard cultivar backgrounds are not a recipe for sustainable pest management, and a much more complex approach may be needed.
Abstract: Transgenic resistance to insects has been demonstrated in plants expressing insecticidal genes such as δ -endotoxins from Bacillus thuringiensis (Bt), protease inhibitors, enzymes, secondary plant metabolites, and plant lectins. While transgenic plants with introduced Bt genes have been deployed in several crops on a global scale, the alternative genes have received considerably less attention. The protease inhibitor and lectin genes largely affect insect growth and development and, in most instances, do not result in insect mortality. The effective concentrations of these proteins are much greater than the Bt toxin proteins. Therefore, the potential of some of the alternative genes can only be realized by deploying them in combination with conventional host plant resistance and Bt genes. Genes conferring resistance to insects can also be deployed as multilines or synthetic varieties. Initial indications from deployment of transgenics with insect resistance in diverse cropping systems in USA, Canada, Arge...

146 citations

Journal ArticleDOI
TL;DR: The spread, classification, and properties of plant proteins capable of inhibiting proteinases have been reviewed and data from the literature on the likely physiological functions of these inhibitors in plants are analyzed.
Abstract: The spread, classification, and properties of plant proteins capable of inhibiting proteinases have been reviewed. Data from the literature on the likely physiological functions of these inhibitors in plants are analyzed.

123 citations

Journal ArticleDOI
TL;DR: A thorough assessment of the current literature suggests that, whereas the non-specific inhibitory effects of recombinant protease inhibitors in plant food webs could often be negligible and their 'unintended' pleiotropic effects in planta of potential agronomic value, the innocuity of these proteins might always remain an issue to be assessed empirically, on a case-by-case basis.
Abstract: Protease inhibitors are a promising complement to Bt toxins for the development of insect-resistant transgenic crops, but their limited specificity against proteolytic enzymes and the ubiquity of protease-dependent processes in living organisms raise questions about their eventual non-target effects in agroecosystems. After a brief overview of the main factors driving the impacts of insect-resistant transgenic crops on non-target organisms, the possible effects of protease inhibitors are discussed from a multitrophic perspective, taking into account not only the target herbivore proteases but also the proteases of other organisms found along the trophic chain, including the plant itself. Major progress has been achieved in recent years towards the design of highly potent broad-spectrum inhibitors and the field deployment of protease inhibitor-expressing transgenic plants resistant to major herbivore pests. A thorough assessment of the current literature suggests that, whereas the non-specific inhibitory effects of recombinant protease inhibitors in plant food webs could often be negligible and their 'unintended' pleiotropic effects in planta of potential agronomic value, the innocuity of these proteins might always remain an issue to be assessed empirically, on a case-by-case basis.

104 citations

Journal ArticleDOI
01 May 2014-Peptides
TL;DR: This review will focus on the relevance of the structural-function relations of AMPs derived from plants and their proper use in applications for human health and agribusiness.

104 citations

Journal Article
TL;DR: The results suggested that VPE was responsible for cleaving Asn-Gln bonds of a single precursor, PV100, to produce multiple seed proteins, and it is likely that the Asn -Gln stretches not only provide cleavage sites for VPE but also produce aminopeptidase-resistant proteins.
Abstract: Precursor-accumulating vesicles mediate transport of the precursors of seed proteins to protein storage vacuoles in maturing pumpkin seeds. We isolated the precursor-accumulating vesicles and characterized a 100-kDa component (PV100) of the vesicles. Isolated cDNA for PV100 encoded a 97,310-Da protein that was composed of a hydrophobic signal peptide and the following three domains: an 11-kDa Cys-rich domain with four CXXXC motifs, a 34-kDa Arg/Glu-rich domain composed of six homologous repeats, and a 50-kDa vicilin-like domain. Both immunocytochemistry and immunoblots with anti-PV100 antibodies showed that <10-kDa proteins and the 50-kDa vicilin-like protein were accumulated in the vacuoles. To identify the mature proteins derived from PV100, soluble proteins of the vacuoles were separated, and their molecular structures were determined. Mass spectrometry and peptide sequencing showed that two Cys-rich peptides, three Arg/Glu-rich peptides, and the vicilin-like protein were produced by cleaving Asn-Gln bonds of PV100 and that all of these proteins had a pyroglutamate at their NH2 termini. To clarify the cleavage mechanism, in vitro processing of PV100 was performed with purified vacuolar processing enzyme (VPE). Taken together, these results suggested that VPE was responsible for cleaving Asn-Gln bonds of a single precursor, PV100, to produce multiple seed proteins. It is likely that the Asn-Gln stretches not only provide cleavage sites for VPE but also produce aminopeptidase-resistant proteins. We also found that the Cys-rich peptide functions as a trypsin inhibitor. Our findings suggested that PV100 is converted into different functional proteins, such as a proteinase inhibitor and a storage protein, in the vacuoles of seed cells.

93 citations