scispace - formally typeset
Search or ask a question
Author

Suresh C. Pillai

Bio: Suresh C. Pillai is an academic researcher from Institute of Technology, Sligo. The author has contributed to research in topics: Photocatalysis & Anatase. The author has an hindex of 50, co-authored 152 publications receiving 12903 citations. Previous affiliations of Suresh C. Pillai include California Institute of Technology & Dublin Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the development of different strategies to modify TiO2 for the utilization of visible light, including non metal and/or metal doping, dye sensitization and coupling semiconductors are discussed.
Abstract: Fujishima and Honda (1972) demonstrated the potential of titanium dioxide (TiO2) semiconductor materials to split water into hydrogen and oxygen in a photo-electrochemical cell. Their work triggered the development of semiconductor photocatalysis for a wide range of environmental and energy applications. One of the most significant scientific and commercial advances to date has been the development of visible light active (VLA) TiO2 photocatalytic materials. In this review, a background on TiO2 structure, properties and electronic properties in photocatalysis is presented. The development of different strategies to modify TiO2 for the utilization of visible light, including non metal and/or metal doping, dye sensitization and coupling semiconductors are discussed. Emphasis is given to the origin of visible light absorption and the reactive oxygen species generated, deduced by physicochemical and photoelectrochemical methods. Various applications of VLA TiO2, in terms of environmental remediation and in particular water treatment, disinfection and air purification, are illustrated. Comprehensive studies on the photocatalytic degradation of contaminants of emerging concern, including endocrine disrupting compounds, pharmaceuticals, pesticides, cyanotoxins and volatile organic compounds, with VLA TiO2 are discussed and compared to conventional UV-activated TiO2 nanomaterials. Recent advances in bacterial disinfection using VLA TiO2 are also reviewed. Issues concerning test protocols for real visible light activity and photocatalytic efficiencies with different light sources have been highlighted.

3,305 citations

Journal ArticleDOI
TL;DR: In this article, advances in the strategies for the visible light activation, origin of visible light activity, and electronic structure of various visible-light active TiO 2 photocatalysts are discussed in detail.
Abstract: The remarkable achievement by Fujishima and Honda (1972) in the photo-electrochemical water splitting results in the extensive use of TiO 2 nanomaterials for environmental purification and energy storage/conversion applications. Though there are many advantages for the TiO 2 compared to other semiconductor photocatalysts, its band gap of 3.2 eV restrains application to the UV-region of the electromagnetic spectrum ( λ ≤ 387.5 nm). As a result, development of visible-light active titanium dioxide is one of the key challenges in the field of semiconductor photocatalysis. In this review, advances in the strategies for the visible light activation, origin of visible-light activity, and electronic structure of various visible-light active TiO 2 photocatalysts are discussed in detail. It has also been shown that if appropriate models are used, the theoretical insights can successfully be employed to develop novel catalysts to enhance the photocatalytic performance in the visible region. Recent developments in theory and experiments in visible-light induced water splitting, degradation of environmental pollutants, water and air purification and antibacterial applications are also reviewed. Various strategies to identify appropriate dopants for improved visible-light absorption and electron–hole separation to enhance the photocatalytic activity are discussed in detail, and a number of recommendations are also presented.

921 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of silver in enhancing the photocatalytic activity has been studied by analyzing the emission properties of both ZnO and silver-modified ZnOs in the presence (emission increases) a...
Abstract: Highly photocatalytically active silver-modified ZnO has been prepared and the effect of silver modification was studied. The structural and optical properties were characterized by X-ray diffraction, Fourier transform IR, differential scanning calorimetry, BET surface area, Raman, UV−vis, and photoluminescence spectroscopy. The photocatalytic activity of these materials was studied by analyzing the degradation of an organic dye, rhodamine 6G (R6G), and it is found that 3 mol % silver-modified ZnO at 400 °C shows approximately four times higher rate of degradation than that of unmodified ZnO and a three times higher rate than that of commercial TiO2 photocatalyst Degussa P-25. It was also noted that the photocatalytic activity for the modified ZnO sample was five times higher than the unmodified sample using sunlight. The effect of silver in enhancing the photocatalytic activity has been studied by analyzing the emission properties of both ZnO and silver-modified ZnO in the presence (emission increases) a...

746 citations

Journal ArticleDOI
TL;DR: In this article, Wenzel, Cassie-Baxter and Miwa-Hashimoto have discussed the fundamental principles of self-cleaning hydrophilic and hydrophobic surfaces, which can have various advanced applications in microfluidics, printing, photovoltaic, biomedical devices, and water purification.
Abstract: Self-cleaning materials have gained considerable attention for both their unique properties and practical applications in energy and environmental areas. Recent examples of many TiO2-derived materials have been illustrated to understand the fundamental principles of self-cleaning hydrophilic and hydrophobic surfaces. Various models including those proposed by Wenzel, Cassie-Baxter and Miwa-Hashimoto are discussed to explain the mechanism of self-cleaning. Examples of semiconductor surfaces exhibiting the simultaneous occurrence of superhydrophilic and superhydrophobic domains on the same surface are illustrated, which can have various advanced applications in microfluidics, printing, photovoltaic, biomedical devices, anti-bacterial surfaces and water purification. Several strategies to improve the efficiency of photocatalytic self-cleaning property have been discussed including doping with metals and non-metals, formation of hetero-junctions between TiO2 and other low bandgap semiconductors, and fabrication of graphene based semiconductor nano-composites. Different mechanisms such as band-gap narrowing, formation of localized energy levels within the bandgap and formation of intrinsic defects such as oxygen vacancies have been suggested to account for the improved activity of doped TiO2 photocatalysts. Various preparation routes for developing efficient superhydrophilic–superhydrophobic patterns have been reviewed. In addition, reversible photo-controlled surfaces with tuneable hydrophilic/hydrophobic properties and its technological applications are discussed. Examples of antireflective surfaces exhibiting self-cleaning properties for the applications in solar cells and flat panel displays have also been provided. Discussion is provided on TiO2 based self-cleaning materials exhibiting hydrophilic and underwater superoleophobic properties and their utilities in water management, antifouling applications and separation of oil in water emulsions are discussed. In addition, ISO testing methods (ISO 27448: 2009, ISO 10678: 2010 and ISO 27447: 2009) for analysing self-cleaning activity and antibacterial action have also been discussed. Rapid photocatalytic self-cleaning testing methods using various photocatalytic activity indicator inks such as resazurin (Rz), basic blue 66 (BB66) and acid violet 7(AV7) for a broad range of materials such as commercial paints, tiles and glasses are also described. Various commercial products such as glass, tiles, fabrics, cement and paint materials developed based on the principle of photo-induced hydrophilic conversion of TiO2 surfaces have also been provided. The wide ranges of practical applications of self-cleaning photocatalytic materials suggest further development to improve their efficiency and utilities. It was concluded that a rational fabrication of multifunctional photocatalytic materials by integrating biological inspired structures with tunable wettability would be favorable to address a number of existing environmental concerns.

712 citations

Journal ArticleDOI
TL;DR: In this paper, the basic principles, photocatalytic-reactor design, kinetics, key findings, and the mechanism of metal-doped TiO2 are comprehensively reviewed.
Abstract: Hydrogen (H2) production via photocatalytic water splitting is one of the most promising technologies for clean solar energy conversion to emerge in recent decades. The achievement of energy production from water splitting would mean that we could use water as a fuel for future energy need. Among the various photocatalytic materials, titanium dioxide (TiO2) is the dominant and most widely studied because of its exceptional physico-chemical characteristics. Surface decoration of metal/non-metal on TiO2 nanoparticles is an outstanding technique to revamp its electronic properties and enrich the H2 production efficiency. Metal dopants play a vital role in separation of electron-hole pairs on the TiO2 surface during UV/visible/simulated solar light irradiation. In this paper, the basic principles, photocatalytic-reactor design, kinetics, key findings, and the mechanism of metal-doped TiO2 are comprehensively reviewed. We found that Langmuir-Hinshelwood kinetic model is commonly employed by the researchers to demonstrate the rate of H2 production. Copper (Cu), gold (Au) and platinum (Pt) are the most widely studied dopants for TiO2, owing to their superior work function. The metal dopants can amplify the H2 production efficiency of TiO2 through Schottky barrier formation, surface plasmon resonance (SPR), generation of gap states by interaction with TiO2 VB states. The recent advances and important consequences of 2D materials, perovskites, and other novel photocatalysts for H2 generation have also been reviewed.

609 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: Approaches to Modifying the Electronic Band Structure for Visible-Light Harvesting and its Applications d0 Metal Oxide Photocatalysts 6518 4.4.1.
Abstract: 2.3. Evaluation of Photocatalytic Water Splitting 6507 2.3.1. Photocatalytic Activity 6507 2.3.2. Photocatalytic Stability 6507 3. UV-Active Photocatalysts for Water Splitting 6507 3.1. d0 Metal Oxide Photocatalyts 6507 3.1.1. Ti-, Zr-Based Oxides 6507 3.1.2. Nb-, Ta-Based Oxides 6514 3.1.3. W-, Mo-Based Oxides 6517 3.1.4. Other d0 Metal Oxides 6518 3.2. d10 Metal Oxide Photocatalyts 6518 3.3. f0 Metal Oxide Photocatalysts 6518 3.4. Nonoxide Photocatalysts 6518 4. Approaches to Modifying the Electronic Band Structure for Visible-Light Harvesting 6519

6,332 citations

Journal ArticleDOI
TL;DR: In this paper, the development of different strategies to modify TiO2 for the utilization of visible light, including non metal and/or metal doping, dye sensitization and coupling semiconductors are discussed.
Abstract: Fujishima and Honda (1972) demonstrated the potential of titanium dioxide (TiO2) semiconductor materials to split water into hydrogen and oxygen in a photo-electrochemical cell. Their work triggered the development of semiconductor photocatalysis for a wide range of environmental and energy applications. One of the most significant scientific and commercial advances to date has been the development of visible light active (VLA) TiO2 photocatalytic materials. In this review, a background on TiO2 structure, properties and electronic properties in photocatalysis is presented. The development of different strategies to modify TiO2 for the utilization of visible light, including non metal and/or metal doping, dye sensitization and coupling semiconductors are discussed. Emphasis is given to the origin of visible light absorption and the reactive oxygen species generated, deduced by physicochemical and photoelectrochemical methods. Various applications of VLA TiO2, in terms of environmental remediation and in particular water treatment, disinfection and air purification, are illustrated. Comprehensive studies on the photocatalytic degradation of contaminants of emerging concern, including endocrine disrupting compounds, pharmaceuticals, pesticides, cyanotoxins and volatile organic compounds, with VLA TiO2 are discussed and compared to conventional UV-activated TiO2 nanomaterials. Recent advances in bacterial disinfection using VLA TiO2 are also reviewed. Issues concerning test protocols for real visible light activity and photocatalytic efficiencies with different light sources have been highlighted.

3,305 citations