scispace - formally typeset
Search or ask a question
Author

Suresh K. Alahari

Bio: Suresh K. Alahari is an academic researcher from LSU Health Sciences Center New Orleans. The author has contributed to research in topics: Cancer & Integrin. The author has an hindex of 33, co-authored 68 publications receiving 6073 citations. Previous affiliations of Suresh K. Alahari include Rockefeller University & Tulane University.
Topics: Cancer, Integrin, Metastasis, microRNA, Breast cancer


Papers
More filters
Journal Article
TL;DR: Cell adhesion is critical for the genesis and maintenance of both three-dimensional structure and normal function in tissues and the biochemical entities mediating cell adhesion are multiprotein complexes comprising three broad classes of macromolecules.
Abstract: Cell adhesion is critical for the genesis and maintenance of both three-dimensional structure and normal function in tissues. The biochemical entities mediating cell adhesion are multiprotein complexes comprising three broad classes of macromolecules: the adhesion receptors, the extracellular matrix

903 citations

Journal ArticleDOI
TL;DR: Understanding exosome biogenesis, their contents and the molecular mechanisms and signaling pathways that are responsible for metastasis and drug-resistance mediated by TDEs may help to devise novel therapeutic approaches for cancer progression particularly to overcome therapy-res resistance and preventing metastasis as major factors of cancer mortality.
Abstract: Tumor-derived exosomes (TDEs) participate in formation and progression of different cancer processes, including tumor microenvironment (TME) remodeling, angiogenesis, invasion, metastasis and drug-resistance. Exosomes initiate or suppress various signaling pathways in the recipient cells via transmitting heterogeneous cargoes. In this review we discuss exosome biogenesis, exosome mediated metastasis and chemoresistance. Furthermore, tumor derived exosomes role in tumor microenvironment remodeling, and angiogenesis is reviewed. Also, exosome induction of epithelial mesenchymal transition (EMT) is highlighted. More importantly, we discuss extensively how exosomes regulate drug resistance in several cancers. Thus, understanding exosome biogenesis, their contents and the molecular mechanisms and signaling pathways that are responsible for metastasis and drug-resistance mediated by TDEs may help to devise novel therapeutic approaches for cancer progression particularly to overcome therapy-resistance and preventing metastasis as major factors of cancer mortality.

687 citations

Journal ArticleDOI
TL;DR: Elucidation of how integrin-mediated cell adhesion controls cell growth is likely to be of fundamental importance in understanding complex biological processes, such as tissue morphogenesis and tumor progression.

672 citations

Journal ArticleDOI
TL;DR: The importance of miRNAs in regulating cellular differentiation and proliferation is not surprising, and their misregulation is linked to cancer.
Abstract: MicroRNAs (miRNAs) are small noncoding, double-stranded RNA molecules that can mediate the expression of target genes with complementary sequences. About 5,300 human genes have been implicated as targets for miRNAs, making them one of the most abundant classes of regulatory genes in humans. MiRNAs recognize their target mRNAs based on sequence complementarity and act on them to cause the inhibition of protein translation by degradation of mRNA. Besides contributing to development and normal function, microRNAs have functions in various human diseases. Given the importance of miRNAs in regulating cellular differentiation and proliferation, it is not surprising that their misregulation is linked to cancer. In cancer, miRNAs function as regulatory molecules, acting as oncogenes or tumor suppressors. Amplification or overexpression of miRNAs can down-regulate tumor suppressors or other genes involved in cell differentiation, thereby contributing to tumor formation by stimulating proliferation, angiogenesis, and invasion; i.e., they act as oncogenes. Similarly, miRNAs can down-regulate different proteins with oncogenic activity; i.e., they act as tumor suppressors. This review will highlight the recent discoveries regarding miRNAs and their importance in cancer.

625 citations

Journal ArticleDOI
TL;DR: An overview of the various therapeutic approaches currently being investigated to undermine EMT and hence, the metastatic progression of cancer as well is provided.
Abstract: The epithelial to mesenchymal transition (EMT) is a biological process in which a non-motile epithelial cell changes to a mesenchymal phenotype with invasive capacities. This phenomenon has been well documented in multiple biological processes including embryogenesis, fibrosis, tumor progression and metastasis. The hallmark of EMT is the loss of epithelial surface markers, most notably E-cadherin, and the acquisition of mesenchymal markers including vimentin and N-cadherin. The downregulation of E-cadherin during EMT can be mediated by its transcriptional repression through the binding of EMT transcription factors (EMT-TFs) such as SNAIL, SLUG and TWIST to E-boxes present in the E-cadherin promoter. Additionally, EMT-TFs can also cooperate with several enzymes to repress the expression of E-cadherin and regulate EMT at the epigenetic and post- translational level. In this review, we will focus on epigenetic and post- translational modifications that are important in EMT. In addition, we will provide an overview of the various therapeutic approaches currently being investigated to undermine EMT and hence, the metastatic progression of cancer as well.

489 citations


Cited by
More filters
Journal ArticleDOI
07 Jan 2000-Cell
TL;DR: This work has been supported by the Department of the Army and the National Institutes of Health, and the author acknowledges the support and encouragement of the National Cancer Institute.

28,811 citations

Journal ArticleDOI
05 Dec 2003-Science
TL;DR: The mechanisms underlying the major steps of migration and the signaling pathways that regulate them are described, and recent advances investigating the nature of polarity in migrating cells and the pathways that establish it are outlined.
Abstract: Cell migration is a highly integrated multistep process that orchestrates embryonic morphogenesis; contributes to tissue repair and regeneration; and drives disease progression in cancer, mental retardation, atherosclerosis, and arthritis. The migrating cell is highly polarized with complex regulatory pathways that spatially and temporally integrate its component processes. This review describes the mechanisms underlying the major steps of migration and the signaling pathways that regulate them, and outlines recent advances investigating the nature of polarity in migrating cells and the pathways that establish it.

4,839 citations

Journal Article
TL;DR: Western medicine has not yet used flavonoids therapeutically, even though their safety record is exceptional, and suggestions are made where such possibilities may be worth pursuing.
Abstract: Flavonoids are nearly ubiquitous in plants and are recognized as the pigments responsible for the colors of leaves, especially in autumn. They are rich in seeds, citrus fruits, olive oil, tea, and red wine. They are low molecular weight compounds composed of a three-ring structure with various substitutions. This basic structure is shared by tocopherols (vitamin E). Flavonoids can be subdivided according to the presence of an oxy group at position 4, a double bond between carbon atoms 2 and 3, or a hydroxyl group in position 3 of the C (middle) ring. These characteristics appear to also be required for best activity, especially antioxidant and antiproliferative, in the systems studied. The particular hydroxylation pattern of the B ring of the flavonoles increases their activities, especially in inhibition of mast cell secretion. Certain plants and spices containing flavonoids have been used for thousands of years in traditional Eastern medicine. In spite of the voluminous literature available, however, Western medicine has not yet used flavonoids therapeutically, even though their safety record is exceptional. Suggestions are made where such possibilities may be worth pursuing.

4,663 citations

Journal ArticleDOI
TL;DR: Although modern synthetic biomaterials represent oversimplified mimics of natural ECMs lacking the essential natural temporal and spatial complexity, a growing symbiosis of materials engineering and cell biology may ultimately result in synthetic materials that contain the necessary signals to recapitulate developmental processes in tissue- and organ-specific differentiation and morphogenesis.
Abstract: New generations of synthetic biomaterials are being developed at a rapid pace for use as three-dimensional extracellular microenvironments to mimic the regulatory characteristics of natural extracellular matrices (ECMs) and ECM-bound growth factors, both for therapeutic applications and basic biological studies. Recent advances include nanofibrillar networks formed by self-assembly of small building blocks, artificial ECM networks from protein polymers or peptide-conjugated synthetic polymers that present bioactive ligands and respond to cell-secreted signals to enable proteolytic remodeling. These materials have already found application in differentiating stem cells into neurons, repairing bone and inducing angiogenesis. Although modern synthetic biomaterials represent oversimplified mimics of natural ECMs lacking the essential natural temporal and spatial complexity, a growing symbiosis of materials engineering and cell biology may ultimately result in synthetic materials that contain the necessary signals to recapitulate developmental processes in tissue- and organ-specific differentiation and morphogenesis.

4,288 citations