scispace - formally typeset
Search or ask a question
Author

Susan A. Elmore

Bio: Susan A. Elmore is an academic researcher from National Institutes of Health. The author has contributed to research in topics: Lymphatic system & Bone marrow. The author has an hindex of 26, co-authored 93 publications receiving 11196 citations. Previous affiliations of Susan A. Elmore include Research Triangle Park & University of North Carolina at Chapel Hill.


Papers
More filters
Journal ArticleDOI
TL;DR: The goal of this review is to provide a general overview of current knowledge on the process of apoptosis including morphology, biochemistry, the role of apoptoses in health and disease, detection methods, as well as a discussion of potential alternative forms of apoptotic proteins.
Abstract: The process of programmed cell death, or apoptosis, is generally characterized by distinct morphological characteristics and energy-dependent biochemical mechanisms. Apoptosis is considered a vital component of various processes including normal cell turnover, proper development and functioning of the immune system, hormone-dependent atrophy, embryonic development and chemical-induced cell death. Inappropriate apoptosis (either too little or too much) is a factor in many human conditions including neurodegenerative diseases, ischemic damage, autoimmune disorders and many types of cancer. The ability to modulate the life or death of a cell is recognized for its immense therapeutic potential. Therefore, research continues to focus on the elucidation and analysis of the cell cycle machinery and signaling pathways that control cell cycle arrest and apoptosis. To that end, the field of apoptosis research has been moving forward at an alarmingly rapid rate. Although many of the key apoptotic proteins have been identified, the molecular mechanisms of action or inaction of these proteins remain to be elucidated. The goal of this review is to provide a general overview of current knowledge on the process of apoptosis including morphology, biochemistry, the role of apoptosis in health and disease, detection methods, as well as a discussion of potential alternative forms of apoptosis.

10,744 citations

Journal ArticleDOI
TL;DR: This work demonstrates the development of a mouse model of CHIKV infection with clinical manifestations and histopathologic findings that are consistent with the disease signs of Chikungunya virus-infected humans, providing a useful tool for studying viral and host factors that drive CHikV pathogenesis and for evaluating potential therapeutics against this emerging viral disease.
Abstract: Chikungunya virus (CHIKV), an emerging mosquito-borne Alphavirus, causes debilitating rheumatic disease in humans that can last for weeks to months. Starting in 2004, a CHIKV outbreak in the Indian Ocean region affected millions of people, and infected travelers introduced CHIKV to new regions. The pathogenesis of CHIKV is poorly understood, and no approved vaccines or specific therapies exist. A major challenge to the study of CHIKV disease is the lack of a small animal model that recapitulates the major outcomes of human infection. In this study, the pathogenesis of CHIKV in C57BL/6J mice was investigated using biological and molecular clones of CHIKV isolated from human serum (CHIKV SL15649). After 14-day-old mice were inoculated with CHIKV SL15649 in the footpad, they displayed reduced weight gain and swelling of the inoculated limb. Histologic analysis of hind limb sections revealed severe necrotizing myositis, mixed inflammatory cell arthritis, chronic active tenosynovitis, and multifocal vasculitis. Interestingly, these disease signs and viral RNA persisted in musculoskeletal tissues for at least 3 weeks after inoculation. This work demonstrates the development of a mouse model of CHIKV infection with clinical manifestations and histopathologic findings that are consistent with the disease signs of CHIKV-infected humans, providing a useful tool for studying viral and host factors that drive CHIKV pathogenesis and for evaluating potential therapeutics against this emerging viral disease.

233 citations

Journal ArticleDOI
TL;DR: Evaluation of ovarian follicle populations in wild-type and ERβ knockout (βERKO) ovaries revealed reduced late antral growth and ovulatory capacity of βERKO follicles, indicated by reduced numbers of large antral follicles and corpora lutea and increased atresia of large antsicle follicles.
Abstract: Both estrogen receptor (ER) alpha and beta are expressed within the ovary and lack of either of these receptors affects ovarian function. In this study, the role of ERalpha and ERbeta in folliculogenesis and ovulation was further analyzed. Evaluation of ovarian follicle populations in wild-type and ERbeta knockout (betaERKO) ovaries revealed reduced late antral growth and ovulatory capacity of betaERKO follicles, indicated by reduced numbers of large antral follicles and corpora lutea and increased atresia of large antral follicles. An in vitro culture system was used to study growth, rupture, and luteinization of wild-type, ERalpha knockout (alphaERKO) and betaERKO ovarian follicles. alphaERKO follicles exhibited wild-type-like growth and ovulation rates but an increased capacity to synthesize estradiol. In contrast, betaERKO follicles showed a significant lack of progression from early antral to large antral stage, decreased estradiol production, and reduced ovulation. Expression patterns of several genes involved in follicle maturation and ovulation were analyzed in follicles grown in vitro. Ar, Pgr, and Has2 mRNA expression levels were the same among the three genotypes. However, betaERKO follicles showed reduced expression of Cyp19 mRNA during follicle maturation and reduced Lhcgr and Ptgs2 mRNA expression after human chorionic gonadotropin stimulus. Luteinization occurs normally in alphaERKO and betaERKO follicles, shown by increased progesterone secretion and increased cdkn1b mRNA expression after human chorionic gonadotropin. Collectively, these data indicate that ERbeta, but not ERalpha, plays a direct role in folliculogenesis. ERbeta appears to facilitate follicle maturation from the early antral to the preovulatory stage.

151 citations

Journal ArticleDOI
TL;DR: The aim of this color atlas, which demonstrates embryonic/fetal heart development, is to provide a tool for pathologists and biomedical scientists to use for detailed histological evaluation of hematoxylin and eosin (H&E)-stained sections of the developing mouse heart with emphasis on embryonic days 11.5–18.5.
Abstract: In humans, congenital heart diseases are common. Since the rapid progression of transgenic technologies, the mouse has become the major animal model of defective cardiovascular development. Moreover, genetically modified mice frequently die in utero, commonly due to abnormal cardiovascular development. A variety of publications address specific developmental stages or structures of the mouse heart, but a single reference reviewing and describing the anatomy and histology of cardiac developmental events, stage by stage, has not been available. The aim of this color atlas, which demonstrates embryonic/fetal heart development, is to provide a tool for pathologists and biomedical scientists to use for detailed histological evaluation of hematoxylin and eosin (H&E)-stained sections of the developing mouse heart with emphasis on embryonic days (E) 11.5-18.5. The selected images illustrate the main structures and developmental events at each stage and serve as reference material for the confirmation of the chronological age of the embryo/early fetus and assist in the identification of any abnormalities. An extensive review of the literature covering cardiac development pre-E11.5 is summarized in the introduction. Although the focus of this atlas is on the descriptive anatomic and histological development of the normal mouse heart from E11.5 to E18.5, potential embryonic cardiac lesions are discussed with a list of the most common transgenic pre- and perinatal heart defects. Representative images of hearts at E11.5-15.5 and E18.5 are provided in Figures 2-4, 6, 8, and 9. A complete set of labeled images (Figures E11.5-18.5) is available on the CD enclosed in this issue of Toxicologic Pathology. All digital images can be viewed online at https://niehsimages.epl-inc.com with the username "ToxPath" and the password "embryohearts."

144 citations

Journal ArticleDOI
TL;DR: The spleen is the largest secondary lymphoid organ, is considered the draining site for compounds that are administered intravenously, and is therefore considered an important organ to evaluate for treatment-related lesions.
Abstract: The spleen is the largest secondary lymphoid organ, is considered the draining site for compounds that are administered intravenously, and is therefore considered an important organ to evaluate for treatment-related lesions. Due to the presence of B and T lymphocytes, the immunotoxic effects of xenobiotics or their metabolites on these cell populations may be reflected in the spleen. Therefore it is one of the recommended organs to evaluate for enhanced histopathology of the immune system. The two major functional zones of the spleen are the hematogenous red pulp and the lymphoid white pulp (periarteriolar sheaths, follicles and marginal zones). For enhanced histopathology, these splenic compartments should be evaluated separately for changes in size and cellularity, and descriptive rather than interpretive terminology should be used to characterize any changes (Haley et al., 2005). Moreover, germinal center development within the lymphoid follicles should be noted as increased or decreased.

126 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review focuses on biochemical concepts of lipidPeroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting geneexpression and promoting cell death.
Abstract: Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews of in vivo mammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.

3,647 citations

Journal Article
TL;DR: A case study explores the background of the digitization project, the practices implemented, and the critiques of the project, which aims to provide access to a plethora of information to EPA employees, scientists, and researchers.
Abstract: The Environmental Protection Agency (EPA) provides access to information on a variety of topics related to the environment and strives to inform citizens of health risks. The EPA also has an extensive library network that consists of 26 libraries throughout the United States, which provide access to a plethora of information to EPA employees, scientists, and researchers. The EPA implemented a reorganization project to digitize their materials so they would be more accessible to a wider range of users, but this plan was drastically accelerated when the EPA was threatened with a budget cut. It chose to close and reduce the hours and services of some of their libraries. As a result, the agency was accused of denying users the “right to know” by making information unavailable, not providing an adequate strategic plan, and discarding vital materials. This case study explores the background of the digitization project, the practices implemented, and the critiques of the project.

2,588 citations

Journal ArticleDOI
TL;DR: How the initial discovery of a role for NF-κB in linking inflammation and cancer led to an improved understanding of tumour-elicited inflammation and its effects on anticancer immunity is discussed.
Abstract: Fourteen years have passed since nuclear factor-κB (NF-κB) was first shown to serve as a molecular lynchpin that links persistent infections and chronic inflammation to increased cancer risk. The young field of inflammation and cancer has now come of age, and inflammation has been recognized by the broad cancer research community as a hallmark and cause of cancer. Here, we discuss how the initial discovery of a role for NF-κB in linking inflammation and cancer led to an improved understanding of tumour-elicited inflammation and its effects on anticancer immunity.

1,545 citations

Journal ArticleDOI
20 Oct 2008-Oncogene
TL;DR: This review analyses the present understanding of the role of JNK in apoptotic signaling and the various mechanisms by which JNK promotes apoptosis.
Abstract: Jun N-terminal kinases or JNKs play a critical role in death receptor-initiated extrinsic as well as mitochondrial intrinsic apoptotic pathways. JNKs activate apoptotic signaling by the upregulation of pro-apoptotic genes through the transactivation of specific transcription factors or by directly modulating the activities of mitochondrial pro- and antiapoptotic proteins through distinct phosphorylation events. This review analyses our present understanding of the role of JNK in apoptotic signaling and the various mechanisms by which JNK promotes apoptosis.

1,284 citations

Journal ArticleDOI
TL;DR: An approach that combines repurposed pharmaceutical agents with other therapeutics has shown promising results in mitigating tumour burden, and this systematic review discusses important pathways commonly targeted in cancer therapy.
Abstract: // Reza Bayat Mokhtari 1,2,4 , Tina S. Homayouni 1 , Narges Baluch 3 , Evgeniya Morgatskaya 1 , Sushil Kumar 1 , Bikul Das 4 and Herman Yeger 1,2 1 Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada 2 Department of Paediatric Laboratory Medicine, The Hospital for Sick Children and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada 3 Department of Pathology and Molecular Medicine, Queen’s University, Kingston, Ontario, Canada 4 Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, Massachusetts, USA Correspondence to: Herman Yeger, email: // Reza Bayat Mokhtari, email: // Keywords : Nrf2-Keap1, HIF-1alpha, carbonic anhydrase 9 (CAIX), histone deacetylase inhibitor (HDACi), carbonic anhydrase inhibitor (CAI) Received : October 19, 2016 Accepted : February 27, 2017 Published : March 30, 2017 Abstract Combination therapy, a treatment modality that combines two or more therapeutic agents, is a cornerstone of cancer therapy. The amalgamation of anti-cancer drugs enhances efficacy compared to the mono-therapy approach because it targets key pathways in a characteristically synergistic or an additive manner. This approach potentially reduces drug resistance, while simultaneously providing therapeutic anti-cancer benefits, such as reducing tumour growth and metastatic potential, arresting mitotically active cells, reducing cancer stem cell populations, and inducing apoptosis. The 5-year survival rates for most metastatic cancers are still quite low, and the process of developing a new anti-cancer drug is costly and extremely time-consuming. Therefore, new strategies that target the survival pathways that provide efficient and effective results at an affordable cost are being considered. One such approach incorporates repurposing therapeutic agents initially used for the treatment of different diseases other than cancer. This approach is effective primarily when the FDA-approved agent targets similar pathways found in cancer. Because one of the drugs used in combination therapy is already FDA-approved, overall costs of combination therapy research are reduced. This increases cost efficiency of therapy, thereby benefiting the “medically underserved”. In addition, an approach that combines repurposed pharmaceutical agents with other therapeutics has shown promising results in mitigating tumour burden. In this systematic review, we discuss important pathways commonly targeted in cancer therapy. Furthermore, we also review important repurposed or primary anti-cancer agents that have gained popularity in clinical trials and research since 2012.

1,270 citations