scispace - formally typeset
Search or ask a question
Author

Susan C. Anenberg

Bio: Susan C. Anenberg is an academic researcher from George Washington University. The author has contributed to research in topics: Air quality index & Population. The author has an hindex of 26, co-authored 68 publications receiving 5014 citations. Previous affiliations of Susan C. Anenberg include United States Environmental Protection Agency & University of North Carolina at Chapel Hill.


Papers
More filters
Journal ArticleDOI
13 Jan 2012-Science
TL;DR: 14 measures targeting methane and BC emissions that reduce projected global mean warming ~0.5°C by 2050 and increases annual crop yields by 30 to 135 million metric tons due to ozone reductions in 2030 and beyond are identified.
Abstract: Tropospheric ozone and black carbon (BC) contribute to both degraded air quality and global warming. We considered ~400 emission control measures to reduce these pollutants by using current technology and experience. We identified 14 measures targeting methane and BC emissions that reduce projected global mean warming ~0.5°C by 2050. This strategy avoids 0.7 to 4.7 million annual premature deaths from outdoor air pollution and increases annual crop yields by 30 to 135 million metric tons due to ozone reductions in 2030 and beyond. Benefits of methane emissions reductions are valued at $700 to $5000 per metric ton, which is well above typical marginal abatement costs (less than $250). The selected controls target different sources and influence climate on shorter time scales than those of carbon dioxide–reduction measures. Implementing both substantially reduces the risks of crossing the 2°C threshold.

1,125 citations

Journal ArticleDOI
TL;DR: The global burden of mortality due to O3 and PM2.5 from anthropogenic emissions is estimated using global atmospheric chemical transport model simulations of preindustrial and present-day (2000) concentrations to derive exposure estimates.
Abstract: BackgroundGround-level concentrations of ozone (O3) and fine particulate matter [≤ 2.5 μm in aerodynamic diameter (PM2.5)] have increased since preindustrial times in urban and rural regions and ar...

613 citations

Journal ArticleDOI
TL;DR: In this article, the authors use the photochemical Community Multiscale Air Quality (CMAQ) model in conjunction with ambient monitored data to create fused surfaces of summer season average 8-hour ozone and annual mean PM2.5 levels at a 12 km grid resolution.
Abstract: Ground-level ozone (O3) and fine particulate matter (PM2.5) are associated with increased risk of mortality. We quantify the burden of modeled 2005 concentrations of O3 and PM2.5 on health in the United States. We use the photochemical Community Multiscale Air Quality (CMAQ) model in conjunction with ambient monitored data to create fused surfaces of summer season average 8-hour ozone and annual mean PM2.5 levels at a 12 km grid resolution across the continental United States. Employing spatially resolved demographic and concentration data, we assess the spatial and age distribution of air-pollution-related mortality and morbidity. For both PM2.5 and O3 we also estimate: the percentage of total deaths due to each pollutant; the reduction in life years and life expectancy; and the deaths avoided according to hypothetical air quality improvements. Using PM2.5 and O3 mortality risk coefficients drawn from the long-term American Cancer Society (ACS) cohort study and National Mortality and Morbidity Air Pollution Study (NMMAPS), respectively, we estimate 130,000 PM2.5-related deaths and 4,700 ozone-related deaths to result from 2005 air quality levels. Among populations aged 65‐99, we estimate nearly 1.1 million life years lost from PM2.5 exposure and approximately 36,000 life years lost from ozone exposure. Among the 10 most populous counties, the percentage of deaths attributable to PM2.5 and ozone ranges from 3.5% in San Jose to 10% in Los Angeles. These results show that despite significant improvements in air quality in recent decades, recent levels of PM2.5 and ozone still pose a nontrivial risk to public health.

531 citations

Journal ArticleDOI
TL;DR: Air quality and health co-benefits, especially as they are mainly local and near-term, provide strong additional motivation for transitioning to a low-carbon future.
Abstract: Actions to reduce greenhouse gas (GHG) emissions often reduce co-emitted air pollutants, bringing co-benefits for air quality and human health. Past studies1-6 typically evaluated near-term and local co-benefits, neglecting the long-range transport of air pollutants7-9, long-term demographic changes, and the influence of climate change on air quality10-12. Here we simulate the co-benefits of global GHG reductions on air quality and human health using a global atmospheric model and consistent future scenarios, via two mechanisms: a) reducing co-emitted air pollutants, and b) slowing climate change and its effect on air quality. We use new relationships between chronic mortality and exposure to fine particulate matter13 and ozone14, global modeling methods15, and new future scenarios16. Relative to a reference scenario, global GHG mitigation avoids 0.5±0.2, 1.3±0.5, and 2.2±0.8 million premature deaths in 2030, 2050, and 2100. Global average marginal co-benefits of avoided mortality are $50-380 (ton CO2)-1, which exceed previous estimates, exceed marginal abatement costs in 2030 and 2050, and are within the low range of costs in 2100. East Asian co-benefits are 10-70 times the marginal cost in 2030. Air quality and health co-benefits, especially as they are mainly local and near-term, provide strong additional motivation for transitioning to a low-carbon future.

448 citations

Journal ArticleDOI
15 May 2017-Nature
TL;DR: Adopting and enforcing next-generation standards (more stringent than Euro 6/VI) could nearly eliminate real-world diesel-related NOx emissions in these markets, avoiding approximately 174,000 global PM2.5- and ozone-related premature deaths in 2040.
Abstract: Vehicle emissions contribute to fine particulate matter (PM 2.5) and tropospheric ozone air pollution, affecting human health, crop yields and climate worldwide. On-road diesel vehicles produce approximately 20 per cent of global anthropogenic emissions of nitrogen oxides (NO x), which are key PM 2.5 and ozone precursors. Regulated NO x emission limits in leading markets have been progressively tightened, but current diesel vehicles emit far more NO x under real-world operating conditions than during laboratory certification testing. Here we show that across 11 markets, representing approximately 80 per cent of global diesel vehicle sales, nearly one-third of on-road heavy-duty diesel vehicle emissions and over half of on-road light-duty diesel vehicle emissions are in excess of certification limits. These excess emissions (totalling 4.6 million tons) are associated with about 38,000 PM 2.5 - and ozone-related premature deaths globally in 2015, including about 10 per cent of all ozone-related premature deaths in the 28 European Union member states. Heavy-duty vehicles are the dominant contributor to excess diesel NO x emissions and associated health impacts in almost all regions. Adopting and enforcing next-generation standards (more stringent than Euro 6/VI) could nearly eliminate real-world diesel-related NO x emissions in these markets, avoiding approximately 174,000 global PM 2.5 - and ozone-related premature deaths in 2040. Most of these benefits can be achieved by implementing Euro VI standards where they have not yet been adopted for heavy-duty vehicles.

424 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provided an assessment of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice.
Abstract: Black carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr−1 in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W m−2 with 90% uncertainty bounds of (+0.08, +1.27) W m−2. Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W m−2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m−2 with 90% uncertainty bounds of +0.17 to +2.1 W m−2. Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. We estimate that black carbon, with a total climate forcing of +1.1 W m−2, is the second most important human emission in terms of its climate forcing in the present-day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short-lived species that may either cool or warm climate. Climate forcings from co-emitted species are estimated and used in the framework described herein. When the principal effects of short-lived co-emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy-related sources (fossil fuel and biofuel) have an industrial-era climate forcing of +0.22 (−0.50 to +1.08) W m−2 during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all short-lived emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial-era climate forcing by all short-lived species from black-carbon-rich sources becomes slightly negative (−0.06 W m−2 with 90% uncertainty bounds of −1.45 to +1.29 W m−2). The uncertainties in net climate forcing from black-carbon-rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co-emitted organic carbon. In prioritizing potential black-carbon mitigation actions, non-science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near-term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black-carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.

4,591 citations

Journal ArticleDOI
17 Sep 2015-Nature
TL;DR: It is found that emissions from residential energy use such as heating and cooking, prevalent in India and China, have the largest impact on premature mortality globally, being even more dominant if carbonaceous particles are assumed to be most toxic.
Abstract: Assessment of the global burden of disease is based on epidemiological cohort studies that connect premature mortality to a wide range of causes, including the long-term health impacts of ozone and fine particulate matter with a diameter smaller than 2.5 micrometres (PM2.5). It has proved difficult to quantify premature mortality related to air pollution, notably in regions where air quality is not monitored, and also because the toxicity of particles from various sources may vary. Here we use a global atmospheric chemistry model to investigate the link between premature mortality and seven emission source categories in urban and rural environments. In accord with the global burden of disease for 2010 (ref. 5), we calculate that outdoor air pollution, mostly by PM2.5, leads to 3.3 (95 per cent confidence interval 1.61-4.81) million premature deaths per year worldwide, predominantly in Asia. We primarily assume that all particles are equally toxic, but also include a sensitivity study that accounts for differential toxicity. We find that emissions from residential energy use such as heating and cooking, prevalent in India and China, have the largest impact on premature mortality globally, being even more dominant if carbonaceous particles are assumed to be most toxic. Whereas in much of the USA and in a few other countries emissions from traffic and power generation are important, in eastern USA, Europe, Russia and East Asia agricultural emissions make the largest relative contribution to PM2.5, with the estimate of overall health impact depending on assumptions regarding particle toxicity. Model projections based on a business-as-usual emission scenario indicate that the contribution of outdoor air pollution to premature mortality could double by 2050.

3,848 citations

Book ChapterDOI
01 Jan 2014
TL;DR: Myhre et al. as discussed by the authors presented the contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) 2013: Anthropogenic and Natural Radiative forcing.
Abstract: This chapter should be cited as: Myhre, G., D. Shindell, F.-M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura and H. Zhang, 2013: Anthropogenic and Natural Radiative Forcing. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Coordinating Lead Authors: Gunnar Myhre (Norway), Drew Shindell (USA)

3,684 citations

Journal Article
TL;DR: A case study explores the background of the digitization project, the practices implemented, and the critiques of the project, which aims to provide access to a plethora of information to EPA employees, scientists, and researchers.
Abstract: The Environmental Protection Agency (EPA) provides access to information on a variety of topics related to the environment and strives to inform citizens of health risks. The EPA also has an extensive library network that consists of 26 libraries throughout the United States, which provide access to a plethora of information to EPA employees, scientists, and researchers. The EPA implemented a reorganization project to digitize their materials so they would be more accessible to a wider range of users, but this plan was drastically accelerated when the EPA was threatened with a budget cut. It chose to close and reduce the hours and services of some of their libraries. As a result, the agency was accused of denying users the “right to know” by making information unavailable, not providing an adequate strategic plan, and discarding vital materials. This case study explores the background of the digitization project, the practices implemented, and the critiques of the project.

2,588 citations