scispace - formally typeset
Search or ask a question
Author

Susan E. Ledger

Other affiliations: Plant & Food Research
Bio: Susan E. Ledger is an academic researcher from University of Sydney. The author has contributed to research in topics: Strigolactone & Axillary bud. The author has an hindex of 6, co-authored 10 publications receiving 1065 citations. Previous affiliations of Susan E. Ledger include Plant & Food Research.
Topics: Strigolactone, Axillary bud, Ripening, Malus, Petunia

Papers
More filters
Journal ArticleDOI
TL;DR: Observations suggest that DAD2 acts to bind the mobile strigolactone signal and then interacts with PhMAX2A during catalysis to initiate an SCF-mediated signal transduction pathway.

541 citations

Journal ArticleDOI
TL;DR: This analysis suggests that the initial and final enzymatic steps with the biosynthetic pathways are important transcriptional regulation points for aroma production in apple.
Abstract: Ethylene is the major effector of ripening in many fleshy fruits. In apples (Malus x domestica) the addition of ethylene causes a climacteric burst of respiration, an increase in aroma, and softening of the flesh. We have generated a transgenic line of 'Royal Gala' apple that produces no detectable levels of ethylene using antisense ACC OXIDASE, resulting in apples with no ethylene-induced ripening attributes. In response to external ethylene these antisense fruits undergo a normal climacteric burst and produced increasing concentrations of ester, polypropanoid, and terpene volatile compounds over an 8-d period. A total of 186 candidate genes that might be involved in the production of these compounds were mined from expressed sequence tags databases and full sequence obtained. Expression patterns of 179 of these were assessed using a 15,720 oligonucleotide apple microarray. Based on sequence similarity and gene expression patterns we identified 17 candidate genes that are likely to be ethylene control points for aroma production in apple. While many of the biosynthetic steps in these pathways were represented by gene families containing two or more genes, expression patterns revealed that only a single member is typically regulated by ethylene. Only certain points within the aroma biosynthesis pathways were regulated by ethylene. Often the first step, and in all pathways the last steps, contained enzymes that were ethylene regulated. This analysis suggests that the initial and final enzymatic steps with the biosynthetic pathways are important transcriptional regulation points for aroma production in apple.

328 citations

Journal ArticleDOI
TL;DR: Gene expression in apple fruit is coordinated with specific developmental stages and 16 genes for which expression patterns are similar in apple and tomato and these genes may play fundamental roles in fruit development are identified.
Abstract: Apple fruit develop over a period of 150 days from anthesis to fully ripe. An array representing approximately 13000 genes (15726 oligonucleotides of 45–55 bases) designed from apple ESTs has been used to study gene expression over eight time points during fruit development. This analysis of gene expression lays the groundwork for a molecular understanding of fruit growth and development in apple. Using ANOVA analysis of the microarray data, 1955 genes showed significant changes in expression over this time course. Expression of genes is coordinated with four major patterns of expression observed: high in floral buds; high during cell division; high when starch levels and cell expansion rates peak; and high during ripening. Functional analysis associated cell cycle genes with early fruit development and three core cell cycle genes are significantly up-regulated in the early stages of fruit development. Starch metabolic genes were associated with changes in starch levels during fruit development. Comparison with microarrays of ethylene-treated apple fruit identified a group of ethylene induced genes also induced in normal fruit ripening. Comparison with fruit development microarrays in tomato has been used to identify 16 genes for which expression patterns are similar in apple and tomato and these genes may play fundamental roles in fruit development. The early phase of cell division and tissue specification that occurs in the first 35 days after pollination has been associated with up-regulation of a cluster of genes that includes core cell cycle genes. Gene expression in apple fruit is coordinated with specific developmental stages. The array results are reproducible and comparisons with experiments in other species has been used to identify genes that may play a fundamental role in fruit development.

211 citations

Journal ArticleDOI
TL;DR: Reduction in expression of AcCCD8 correlated with an increase in branch development and delayed leaf senescence and the CCD pathway for control of branch development is conserved across a wide range of species, including kiwifruit, a woody perennial.
Abstract: Summary •CAROTENOID CLEAVAGE DIOXYGENASE (CCD) genes have been demonstrated to play an integral role in the control of branch development in model plants, including Arabidopsis, pea (Pisum sativum), petunia (Petunia hybrida) and rice (Oryza sativa). •Actinidia chinensis is a woody perennial plant grown for commercial production of kiwifruit. CCD7 and CCD8 genes were isolated from A. chinensis and these genes are predominantly expressed in the roots of kiwifruit. AcCCD7 and AcCCD8 were able to complement the corresponding Arabidopsis mutants max3 and max4. The function of AcCCD8 in branch development was determined in transgenic kiwifruit plants containing an RNAi construct for AcCCD8. •Reduction in expression of AcCCD8 correlated with an increase in branch development and delayed leaf senescence. •The CCD pathway for control of branch development is conserved across a wide range of species, including kiwifruit, a woody perennial.

78 citations

Journal ArticleDOI
TL;DR: It is shown that the abundance of the receptor transcript is regulated by light quality, such that axillary buds growing in added far-red light have greatly increased receptor transcript abundance, which suggests a mechanism whereby the impact of any SL signal reaching an axillary bud is modulated by the responsiveness of these cells to the signal.
Abstract: Plants alter their development in response to changes in their environment. This responsiveness has proven to be a successful evolutionary trait. Here, we tested the hypothesis that two key environmental factors, light and nutrition, are integrated within the axillary bud to promote or suppress the growth of the bud into a branch. Using petunia (Petunia hybrida) as a model for vegetative branching, we manipulated both light quality (as crowding and the red-to-far-red light ratio) and phosphate availability, such that the axillary bud at node 7 varied from deeply dormant to rapidly growing. In conjunction with the phenotypic characterization, we also monitored the state of the strigolactone (SL) pathway by quantifying SL-related gene transcripts. Mutants in the SL pathway inhibit but do not abolish the branching response to these environmental signals, and neither signal is dominant over the other, suggesting that the regulation of branching in response to the environment is complex. We have isolated three new putatively SL-related TCP (for Teosinte branched1, Cycloidia, and Proliferating cell factor) genes from petunia, and have identified that these TCP-type transcription factors may have roles in the SL signaling pathway both before and after the reception of the SL signal at the bud. We show that the abundance of the receptor transcript is regulated by light quality, such that axillary buds growing in added far-red light have greatly increased receptor transcript abundance. This suggests a mechanism whereby the impact of any SL signal reaching an axillary bud is modulated by the responsiveness of these cells to the signal.

51 citations


Cited by
More filters
Journal ArticleDOI
Riccardo Velasco, Andrey Zharkikh1, Jason P. Affourtit2, Amit Dhingra3, Alessandro Cestaro, Ananth Kalyanaraman3, Paolo Fontana, Satish Bhatnagar1, Michela Troggio, Dmitry Pruss1, Silvio Salvi4, Massimo Pindo, Paolo Baldi, Sara Castelletti, Marina Cavaiuolo, G. Coppola, Fabrizio Costa, V. Cova, Antonio Dal Ri, Vadim V. Goremykin, M. Komjanc, Sara Longhi, P. Magnago, Giulia Malacarne, Mickael Malnoy, Diego Micheletti, Marco Moretto, Michele Perazzolli, Azeddine Si-Ammour, Silvia Vezzulli, E. Zini, Glenn Eldredge1, Lisa M. Fitzgerald1, N. Gutin1, Jerry S. Lanchbury1, Teresita Macalma1, J.T. Mitchell1, Julia Reid1, Bryan Wardell1, Chinnappa D. Kodira2, Zhoutao Chen2, Brian Desany2, Faheem Niazi2, Melinda Palmer2, Tyson Koepke3, Derick Jiwan3, Scott Schaeffer3, Vandhana Krishnan3, Changjun Wu3, Vu T. Chu5, Stephen T. King5, Jessica Vick5, Quanzhou Tao, Amy Mraz, Aimee Stormo, Keith E. Stormo, Robert Bogden, Davide Ederle6, Alessandra Stella6, Alberto Vecchietti6, Martin M. Kater7, Simona Masiero7, Pauline Lasserre, Yves Lespinasse, Andrew C. Allan8, Vincent G. M. Bus8, David Chagné8, Ross N. Crowhurst8, Andrew P. Gleave8, Enrico Lavezzo9, Jeffrey A. Fawcett10, Jeffrey A. Fawcett11, Sebastian Proost10, Sebastian Proost11, Pierre Rouzé11, Pierre Rouzé10, Lieven Sterck11, Lieven Sterck10, Stefano Toppo9, Barbara Lazzari6, Roger P. Hellens8, Charles-Eric Durel, Alexander Gutin1, Roger E. Bumgarner5, Susan E. Gardiner8, Mark H. Skolnick1, Michael Egholm2, Yves Van de Peer10, Yves Van de Peer11, Francesco Salamini6, Roberto Viola 
TL;DR: It is shown that a relatively recent (>50 million years ago) genome-wide duplication has resulted in the transition from nine ancestral chromosomes to 17 chromosomes in the Pyreae, which partly support the monophyly of the ancestral paleohexaploidy of eudicots.
Abstract: We report a high-quality draft genome sequence of the domesticated apple (Malus × domestica). We show that a relatively recent (>50 million years ago) genome-wide duplication (GWD) has resulted in the transition from nine ancestral chromosomes to 17 chromosomes in the Pyreae. Traces of older GWDs partly support the monophyly of the ancestral paleohexaploidy of eudicots. Phylogenetic reconstruction of Pyreae and the genus Malus, relative to major Rosaceae taxa, identified the progenitor of the cultivated apple as M. sieversii. Expansion of gene families reported to be involved in fruit development may explain formation of the pome, a Pyreae-specific false fruit that develops by proliferation of the basal part of the sepals, the receptacle. In apple, a subclade of MADS-box genes, normally involved in flower and fruit development, is expanded to include 15 members, as are other gene families involved in Rosaceae-specific metabolism, such as transport and assimilation of sorbitol.

1,718 citations

Journal ArticleDOI
19 Dec 2013-Nature
TL;DR: The combined genetic and biochemical data reveal that D53 acts as a repressor of the SL signalling pathway, whose hormone-induced degradation represents a key molecular link between SL perception and responses.
Abstract: Strigolactones (SLs) are a new class of carotenoid-derived phytohormones essential for developmental processes shaping plant architecture and interactions with parasitic weeds and symbiotic arbuscular mycorrhizal fungi. Despite the rapid progress in elucidating the SL biosynthetic pathway, the perception and signaling mechanisms of SL remain poorly understood. Here we show that DWARF53 (D53) acts as a repressor of SL signaling and SLs induce its degradation. We found that the rice d53 mutant, which produces an exaggerated number of tillers compared to wild type plants, is caused by a gain-of-function mutation and is insensitive to exogenous SL treatment. The D53 gene product shares predicted features with the class I Clp ATPase proteins and can form a complex with the α/β hydrolase protein DWARF14 (D14) and the F-box protein DWARF3 (D3), two previously identified signaling components potentially responsible for SL perception. We demonstrate that, in a D14- and D3-dependent manner, SLs induce D53 degradation by the proteasome and abrogate its activity in promoting axillary bud outgrowth. Our combined genetic and biochemical data reveal that D53 acts as a repressor of the SL signaling pathway, whose hormone-induced degradation represents a key molecular link between SL perception and responses.

611 citations

Journal ArticleDOI
19 Dec 2013-Nature
TL;DR: The characterization of a dominant SL-insensitive rice (Oryza sativa) mutant dwarf 53 (d53) and the cloning of D53, which encodes a substrate of the SCFD3 ubiquitination complex and functions as a repressor of SL signalling are reported.
Abstract: Strigolactones (SLs) are a group of newly identified plant hormones that control plant shoot branching. SL signalling requires the hormone-dependent interaction of DWARF 14 (D14), a probable candidate SL receptor, with DWARF 3 (D3), an F-box component of the Skp-Cullin-F-box (SCF) E3 ubiquitin ligase complex. Here we report the characterization of a dominant SL-insensitive rice (Oryza sativa) mutant dwarf 53 (d53) and the cloning of D53, which encodes a substrate of the SCF(D3) ubiquitination complex and functions as a repressor of SL signalling. Treatments with GR24, a synthetic SL analogue, cause D53 degradation via the proteasome in a manner that requires D14 and the SCF(D3) ubiquitin ligase, whereas the dominant form of D53 is resistant to SL-mediated degradation. Moreover, D53 can interact with transcriptional co-repressors known as TOPLESS-RELATED PROTEINS. Our results suggest a model of SL signalling that involves SL-dependent degradation of the D53 repressor mediated by the D14-D3 complex.

603 citations

Journal ArticleDOI
TL;DR: This review focuses on SL biosynthesis, describes the hormonal and environmental factors that determine this process, and discusses SL transport and downstream signaling as well as the role of SLs in regulating plant development.
Abstract: Strigolactones (SLs) are carotenoid-derived plant hormones and signaling molecules. When released into the soil, SLs indicate the presence of a host to symbiotic fungi and root parasitic plants. In planta, they regulate several developmental processes that adapt plant architecture to nutrient availability. Highly branched/tillered mutants in Arabidopsis, pea, and rice have enabled the identification of four SL biosynthetic enzymes: a cis/trans-carotene isomerase, two carotenoid cleavage dioxygenases, and a cytochrome P450 (MAX1). In vitro and in vivo enzyme assays and analysis of mutants have shown that the pathway involves a combination of new reactions leading to carlactone, which is converted by a rice MAX1 homolog into an SL parent molecule with a tricyclic lactone moiety. In this review, we focus on SL biosynthesis, describe the hormonal and environmental factors that determine this process, and discuss SL transport and downstream signaling as well as the role of SLs in regulating plant development.

570 citations

Journal ArticleDOI
TL;DR: An elegant study has unveiled a new and unexpected mechanism for specific protein localization to the periarbuscular membrane, which relies on the timing of gene expression to synchronize protein biosynthesis with a redirection of secretion.
Abstract: The default mineral nutrient acquisition strategy of land plants is the symbiosis with arbuscular mycorrhiza (AM) fungi. Research into the cell and developmental biology of AM revealed fascinating insights into the plasticity of plant cell development and of interorganismic communication. It is driven by the prospect of increased exploitation of AM benefits for sustainable agriculture. The plant cell developmental program for intracellular accommodation of AM fungi is activated by a genetically defined signaling pathway involving calcium spiking in the nucleus as second messenger. Calcium spiking is triggered by chitooligosaccharides released by AM fungi that are probably perceived via LysM domain receptor kinases. Fungal infection and calcium spiking are spatiotemporally coordinated, and only cells committed to accommodating the fungus undergo high-frequency spiking. Delivery of mineral nutrients by AM fungi occurs at tree-shaped hyphal structures, the arbuscules, in plant cortical cells. Nutrients are taken up at a plant-derived periarbuscular membrane, which surrounds fungal hyphae and carries a specific transporter composition that is of direct importance for symbiotic efficiency. An elegant study has unveiled a new and unexpected mechanism for specific protein localization to the periarbuscular membrane, which relies on the timing of gene expression to synchronize protein biosynthesis with a redirection of secretion. The control of AM development by phytohormones is currently subject to active investigation and has led to the rediscovery of strigolactones. Nearly all tested phytohormones regulate AM development, and major insights into the mechanisms of this regulation are expected in the near future.

427 citations