scispace - formally typeset
Search or ask a question
Author

Susan E. Ptak

Bio: Susan E. Ptak is an academic researcher from Max Planck Society. The author has contributed to research in topics: Population & Recombination. The author has an hindex of 13, co-authored 15 publications receiving 2312 citations.

Papers
More filters
Journal ArticleDOI
16 Nov 2006-Nature
TL;DR: A 38,000-year-old Neanderthal fossil that is exceptionally free of contamination from modern human DNA is identified and it is revealed that modern human and Neanderthal DNA sequences diverged on average about 500,000 years ago.
Abstract: Neanderthals are the extinct hominid group most closely related to contemporary humans, so their genome offers a unique opportunity to identify genetic changes specific to anatomically fully modern humans. We have identified a 38,000-year-old Neanderthal fossil that is exceptionally free of contamination from modern human DNA. Direct high-throughput sequencing of a DNA extract from this fossil has thus far yielded over one million base pairs of hominoid nuclear DNA sequences. Comparison with the human and chimpanzee genomes reveals that modern human and Neanderthal DNA sequences diverged on average about 500,000 years ago. Existing technology and fossil resources are now sufficient to initiate a Neanderthal genome-sequencing effort.

677 citations

Journal ArticleDOI
28 Jun 2012-Nature
TL;DR: The sequencing and assembly of the bonobo genome is reported to study its evolutionary relationship with the chimpanzee and human genomes, and it is found that more than three per cent of the human genome is more closely related to either theBonobo or the chimpanzees genome than these are to each other.
Abstract: Sequencing of the bonobo genome shows that more than three per cent of the human genome is more closely related to either the bonobo genome or the chimpanzee genome than those genomes are to each other. The chimpanzee and the bonobo are our species' two closest living relatives. This paper reports the genome sequence of the bonobo, the last ape to be sequenced. Comparative genomic analyses reveal that more than 3% of the human genome is more closely related to either the bonobo or the chimpanzee genome than these are to each other. The results shed light on the ancestry of the two ape species and might eventually help us to understand the genetic basis of phenotypes that humans share with one or the other ape species. Two African apes are the closest living relatives of humans: the chimpanzee (Pan troglodytes) and the bonobo (Pan paniscus). Although they are similar in many respects, bonobos and chimpanzees differ strikingly in key social and sexual behaviours1,2,3,4, and for some of these traits they show more similarity with humans than with each other. Here we report the sequencing and assembly of the bonobo genome to study its evolutionary relationship with the chimpanzee and human genomes. We find that more than three per cent of the human genome is more closely related to either the bonobo or the chimpanzee genome than these are to each other. These regions allow various aspects of the ancestry of the two ape species to be reconstructed. In addition, many of the regions that overlap genes may eventually help us understand the genetic basis of phenotypes that humans share with one of the two apes to the exclusion of the other.

452 citations

Journal ArticleDOI
TL;DR: It is shown that regions that experience less recombination have reduced divergence to chimpanzee and to baboon, as well as lower levels of diversity, which suggests that mutation and recombination are associated processes in humans, so that the positive correlation between diversity and recombinations may have a purely neutral explanation.
Abstract: One of the most striking findings to emerge from the study of genomic patterns of variation is that regions with lower recombination rates tend to have lower levels of intraspecific diversity but not of interspecies divergence. This uncoupling of variation within and between species has been widely interpreted as evidence that natural selection shapes patterns of genetic variability genomewide. We revisited the relationship between diversity, divergence, and recombination in humans, using data from closely related species and better estimates of recombination rates than previously available. We show that regions that experience less recombination have reduced divergence to chimpanzee and to baboon, as well as lower levels of diversity. This observation suggests that mutation and recombination are associated processes in humans, so that the positive correlation between diversity and recombination may have a purely neutral explanation. Consistent with this hypothesis, diversity levels no longer increase significantly with recombination rates after correction for divergence to chimpanzee.

297 citations

Journal ArticleDOI
TL;DR: Estimating recombination rates from 14 Mb of linkage disequilibrium data in central chimpanzee and human populations suggests that recombination hotspots are not conserved between the two species and that recombine rates in larger genomic regions are only weakly conserved.
Abstract: Recombination rates seem to vary extensively along the human genome. Pedigree analysis suggests that rates vary by an order of magnitude when measured at the megabase scale 1 , and at a finer scale, sperm typing studies point to the existence of recombination hotspots 2 . These are short regions (1–2 kb) in which recombination rates are 10–1,000 times higher than the background rate. Less is known about how recombination rates change over time. Here we determined to what degree recombination rates are conserved among closely related species by estimating recombination rates from 14 Mb of linkage disequilibrium data in central chimpanzee and human populations. The results suggest that recombination hotspots are not conserved between the two species and that recombination rates in larger (50 kb) genomic regions are only weakly conserved. Therefore, the recombination landscape has changed markedly between the two species.

291 citations

Journal ArticleDOI
TL;DR: It is found that measures of GC and CpG content, simple-repeat structures, as well as the distance from the centromeres and the telomeres predict diversity as wellAs divergence, and large-scale recombination rates measured from pedigrees are still significant predictors of human diversity and human-chimpanzee divergence.
Abstract: Levels of diversity vary across the human genome. This variation is caused by two forces: differences in mutation rates and the differential impact of natural selection. Pertinent to the question of the relative importance of these two forces is the observation that both diversity within species and interspecies divergence increase with recombination rates. This suggests that mutation and recombination are either directly coupled or linked through some third factor. Here, we test these possibilities using the recently generated sequence of the chimpanzee genome and new estimates of human diversity. We find that measures of GC and CpG content, simple-repeat structures, as well as the distance from the centromeres and the telomeres predict diversity as well as divergence. After controlling for these factors, large-scale recombination rates measured from pedigrees are still significant predictors of human diversity and human-chimpanzee divergence. Furthermore, the correlation between human diversity and recombination remains significant even after controlling for human-chimpanzee divergence. Two plausible and non-mutually exclusive explanations are, first, that natural selection has shaped the patterns of diversity seen in humans and, second, that recombination rates across the genome have changed since humans and chimpanzees shared a common ancestor, so that current recombination rates are a better predictor of diversity than of divergence. Because there are indications that recombination rates may have changed rapidly during human evolution, we favor the latter explanation.

178 citations


Cited by
More filters
Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

Journal ArticleDOI
TL;DR: A technical review of template preparation, sequencing and imaging, genome alignment and assembly approaches, and recent advances in current and near-term commercially available NGS instruments is presented.
Abstract: Demand has never been greater for revolutionary technologies that deliver fast, inexpensive and accurate genome information. This challenge has catalysed the development of next-generation sequencing (NGS) technologies. The inexpensive production of large volumes of sequence data is the primary advantage over conventional methods. Here, I present a technical review of template preparation, sequencing and imaging, genome alignment and assembly approaches, and recent advances in current and near-term commercially available NGS instruments. I also outline the broad range of applications for NGS technologies, in addition to providing guidelines for platform selection to address biological questions of interest.

7,023 citations

Journal ArticleDOI
TL;DR: Canu, a successor of Celera Assembler that is specifically designed for noisy single-molecule sequences, is presented, demonstrating that Canu can reliably assemble complete microbial genomes and near-complete eukaryotic chromosomes using either Pacific Biosciences or Oxford Nanopore technologies.
Abstract: Long-read single-molecule sequencing has revolutionized de novo genome assembly and enabled the automated reconstruction of reference-quality genomes. However, given the relatively high error rates of such technologies, efficient and accurate assembly of large repeats and closely related haplotypes remains challenging. We address these issues with Canu, a successor of Celera Assembler that is specifically designed for noisy single-molecule sequences. Canu introduces support for nanopore sequencing, halves depth-of-coverage requirements, and improves assembly continuity while simultaneously reducing runtime by an order of magnitude on large genomes versus Celera Assembler 8.2. These advances result from new overlapping and assembly algorithms, including an adaptive overlapping strategy based on tf-idf weighted MinHash and a sparse assembly graph construction that avoids collapsing diverged repeats and haplotypes. We demonstrate that Canu can reliably assemble complete microbial genomes and near-complete eukaryotic chromosomes using either Pacific Biosciences (PacBio) or Oxford Nanopore technologies and achieves a contig NG50 of >21 Mbp on both human and Drosophila melanogaster PacBio data sets. For assembly structures that cannot be linearly represented, Canu provides graph-based assembly outputs in graphical fragment assembly (GFA) format for analysis or integration with complementary phasing and scaffolding techniques. The combination of such highly resolved assembly graphs with long-range scaffolding information promises the complete and automated assembly of complex genomes.

4,806 citations

Journal ArticleDOI
18 Oct 2007-Nature
TL;DR: The Phase II HapMap is described, which characterizes over 3.1 million human single nucleotide polymorphisms genotyped in 270 individuals from four geographically diverse populations and includes 25–35% of common SNP variation in the populations surveyed, and increased differentiation at non-synonymous, compared to synonymous, SNPs is demonstrated.
Abstract: We describe the Phase II HapMap, which characterizes over 3.1 million human single nucleotide polymorphisms (SNPs) genotyped in 270 individuals from four geographically diverse populations and includes 25-35% of common SNP variation in the populations surveyed. The map is estimated to capture untyped common variation with an average maximum r2 of between 0.9 and 0.96 depending on population. We demonstrate that the current generation of commercial genome-wide genotyping products captures common Phase II SNPs with an average maximum r2 of up to 0.8 in African and up to 0.95 in non-African populations, and that potential gains in power in association studies can be obtained through imputation. These data also reveal novel aspects of the structure of linkage disequilibrium. We show that 10-30% of pairs of individuals within a population share at least one region of extended genetic identity arising from recent ancestry and that up to 1% of all common variants are untaggable, primarily because they lie within recombination hotspots. We show that recombination rates vary systematically around genes and between genes of different function. Finally, we demonstrate increased differentiation at non-synonymous, compared to synonymous, SNPs, resulting from systematic differences in the strength or efficacy of natural selection between populations.

4,565 citations

Journal ArticleDOI
07 May 2010-Science
TL;DR: The genomic data suggest that Neandertals mixed with modern human ancestors some 120,000 years ago, leaving traces of Ne andertal DNA in contemporary humans, suggesting that gene flow from Neand Bertals into the ancestors of non-Africans occurred before the divergence of Eurasian groups from each other.
Abstract: Neandertals, the closest evolutionary relatives of present-day humans, lived in large parts of Europe and western Asia before disappearing 30,000 years ago. We present a draft sequence of the Neandertal genome composed of more than 4 billion nucleotides from three individuals. Comparisons of the Neandertal genome to the genomes of five present-day humans from different parts of the world identify a number of genomic regions that may have been affected by positive selection in ancestral modern humans, including genes involved in metabolism and in cognitive and skeletal development. We show that Neandertals shared more genetic variants with present-day humans in Eurasia than with present-day humans in sub-Saharan Africa, suggesting that gene flow from Neandertals into the ancestors of non-Africans occurred before the divergence of Eurasian groups from each other.

3,575 citations