scispace - formally typeset
Search or ask a question
Author

Susan K. Boches

Bio: Susan K. Boches is an academic researcher from The Forsyth Institute. The author has contributed to research in topics: Treponema denticola & Periodontitis. The author has an hindex of 8, co-authored 8 publications receiving 3340 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The purpose of this study was to determine the bacterial diversity in the human subgingival plaque by using culture-independent molecular methods as part of an ongoing effort to obtain full 16S rRNA sequences for all cultivable and not-yet-cultivated species of human oral bacteria.
Abstract: The purpose of this study was to determine the bacterial diversity in the human subgingival plaque by using culture-independent molecular methods as part of an ongoing effort to obtain full 16S rRNA sequences for all cultivable and not-yet-cultivated species of human oral bacteria. Subgingival plaque was analyzed from healthy subjects and subjects with refractory periodontitis, adult periodontitis, human immunodeficiency virus periodontitis, and acute necrotizing ulcerative gingivitis. 16S ribosomal DNA (rDNA) bacterial genes from DNA isolated from subgingival plaque samples were PCR amplified with all-bacterial or selective primers and cloned into Escherichia coli. The sequences of cloned 16S rDNA inserts were used to determine species identity or closest relatives by comparison with sequences of known species. A total of 2,522 clones were analyzed. Nearly complete sequences of approximately 1,500 bases were obtained for putative new species. About 60% of the clones fell into 132 known species, 70 of which were identified from multiple subjects. About 40% of the clones were novel phylotypes. Of the 215 novel phylotypes, 75 were identified from multiple subjects. Known putative periodontal pathogens such as Porphyromonas gingivalis, Bacteroides forsythus, and Treponema denticola were identified from multiple subjects, but typically as a minor component of the plaque as seen in cultivable studies. Several phylotypes fell into two recently described phyla previously associated with extreme natural environments, for which there are no cultivable species. A number of species or phylotypes were found only in subjects with disease, and a few were found only in healthy subjects. The organisms identified only from diseased sites deserve further study as potential pathogens. Based on the sequence data in this study, the predominant subgingival microbial community consisted of 347 species or phylotypes that fall into 9 bacterial phyla. Based on the 347 species seen in our sample of 2,522 clones, we estimate that there are 68 additional unseen species, for a total estimate of 415 species in the subgingival plaque. When organisms found on other oral surfaces such as the cheek, tongue, and teeth are added to this number, the best estimate of the total species diversity in the oral cavity is approximately 500 species, as previously proposed.

1,899 citations

Journal ArticleDOI
TL;DR: Comparing the bacteria found in early childhood caries (ECC) to those found in caries-free children by using molecular identification methods suggests that A. gerencseriae and other Actinomyces species may play an important role incaries initiation and that a novel Bifidobacterium may be a major pathogen in deep caries.
Abstract: Although substantial epidemiologic evidence links Streptococcus mutans to caries, the pathobiology of caries may involve more complex communities of bacterial species. Molecular methods for bacterial identification and enumeration now make it possible to more precisely study the microbiota associated with dental caries. The purpose of this study was to compare the bacteria found in early childhood caries (ECC) to those found in caries-free children by using molecular identification methods. Cloning and sequencing of bacterial 16S ribosomal DNAs from a healthy subject and a subject with ECC were used for identification of novel species or uncultivated phylotypes and species not previously associated with dental caries. Ten novel phylotypes were identified. A number of species or phylotypes that may play a role in health or disease were identified and warrant further investigation. In addition, quantitative measurements for 23 previously known bacterial species or species groups were obtained by a reverse capture checkerboard assay for 30 subjects with caries and 30 healthy controls. Significant differences were observed for nine species: S. sanguinis was associated with health and, in order of decreasing cell numbers, Actinomyces gerencseriae, Bifidobacterium, S. mutans, Veillonella, S. salivarius, S. constellatus, S. parasanguinis, and Lactobacillus fermentum were associated with caries. These data suggest that A. gerencseriae and other Actinomyces species may play an important role in caries initiation and that a novel Bifidobacterium may be a major pathogen in deep caries. Further investigation could lead to the identification of targets for biological interventions in the caries process and thereby contribute to improved prevention of and treatment for this significant public health problem.

699 citations

Journal ArticleDOI
TL;DR: Patients with RP presented a distinct microbial profile compared to patients in the GR and PH groups, as determined by HOMIM.
Abstract: Background: This study compared the subgingival microbiota of subjects with refractory periodontitis (RP) to those in subjects with treatable periodontitis (GRs = good responders) or periodontal health (PH) using the Human Oral Microbe Identification Microarray (HOMIM).Methods: At baseline, subgingival plaque samples were taken from 47 subjects with periodontitis and 20 individuals with PH and analyzed for the presence of 300 species by HOMIM. The subjects with periodontitis were classified as having RP (n = 17) based on mean attachment loss (AL) and/or more than three sites with AL ≥2.5 mm after scaling and root planing, surgery, and systemically administered amoxicillin and metronidazole or as GRs (n = 30) based on mean attachment gain and no sites with AL ≥2.5 mm after treatment. Significant differences in taxa among the groups were sought using the Kruskal-Wallis and χ2 tests.Results: More species were detected in patients with disease (GR or RP) than in those without disease (PH). Subjects with RP we...

493 citations

Journal ArticleDOI
TL;DR: The purpose of this study was to examine the diversity of spirochetes in the subgingival pocket of multiple subjects with a range of periodontal conditions, including two healthy, one adult periodontitis, three acute necrotizing ulcerative gingivitis, eight refractory periodontritis, and one human immunodeficiency virus (HIV) periodontopathy.
Abstract: The purpose of this study was to examine the diversity of spirochetes in the subgingival pocket of multiple subjects with a range of periodontal conditions, including two healthy, one adult periodontitis, three acute necrotizing ulcerative gingivitis, eight refractory periodontitis, and one human immunodeficiency virus (HIV) periodontitis. The 16S rRNA genes of spirochetes in plaque were amplified by polymerase chain reaction using spirochete selective primers. Over 500 clones were sequenced and subjected to phylogenetic analysis. The sequences clustered into the 10 known cultivated Treponema species and into 47 as-yet-uncultivated Treponema species. Most of these Treponema species were identified from multiple clones and subjects. The human periodontal pocket harbors a highly diverse treponeme population. Of the cultivated species, Treponema denticola, Treponema maltophilum and Treponema sp. Smibert-3 were most commonly encountered in diseased subjects but rarely in healthy subjects. Molecular tools based on the sequence data from this study will allow determination of the prevalence of cultivable and uncultivable treponemes in oral diseases.

174 citations

Journal ArticleDOI
TL;DR: Based on sequence analysis and checkerboard analysis, NUP did not possess the classical periodontal pathogens such as Porphyromonas gingivalis, and the microbial profiles of NUP and periodontitis had many similarities.
Abstract: Background: Necrotizing ulcerative periodontitis (NUP) is a painful and potentially debilitating affliction that affects about 2% to 6% of HIV-positive subjects. NUP may be caused by specific microorganisms that are presently unknown or by microbial species not usually thought to cause periodontal infections. The purpose of this study was to define the bacterial species associated with NUP in HIV-positive patients. Methods: 16S rRNA bacterial genes of DNA isolated from subgingival plaque of 8 HIV-positive subjects with NUP were amplified by polymerase chain reaction (PCR) and cloned into Escherichia coli. The sequences of cloned inserts were used to determine species identity or closest relatives by comparison with known sequences. The microbial profiles in subgingival plaque of subjects with NUP, chronic periodontitis, and periodontal health were compared using a battery of over 200 oligonucleotide probes in a PCR-based, reverse-capture, checkerboard DNA-DNA hybridization assay. Results: Sequence analysi...

94 citations


Cited by
More filters
Journal ArticleDOI

3,734 citations

Journal ArticleDOI
TL;DR: The purposes were to utilize culture-independent molecular techniques to extend the knowledge on the breadth of bacterial diversity in the healthy human oral cavity, including not-yet-cultivated bacteria species, and to determine the site and subject specificity of bacterial colonization.
Abstract: More than 700 bacterial species or phylotypes, of which over 50% have not been cultivated, have been detected in the oral cavity. Our purposes were (i) to utilize culture-independent molecular techniques to extend our knowledge on the breadth of bacterial diversity in the healthy human oral cavity, including not-yet-cultivated bacteria species, and (ii) to determine the site and subject specificity of bacterial colonization. Nine sites from five clinically healthy subjects were analyzed. Sites included tongue dorsum, lateral sides of tongue, buccal epithelium, hard palate, soft palate, supragingival plaque of tooth surfaces, subgingival plaque, maxillary anterior vestibule, and tonsils. 16S rRNA genes from sample DNA were amplified, cloned, and transformed into Escherichia coli. Sequences of 16S rRNA genes were used to determine species identity or closest relatives. In 2,589 clones, 141 predominant species were detected, of which over 60% have not been cultivated. Thirteen new phylotypes were identified. Species common to all sites belonged to the genera Gemella, Granulicatella, Streptococcus, and Veillonella. While some species were subject specific and detected in most sites, other species were site specific. Most sites possessed 20 to 30 different predominant species, and the number of predominant species from all nine sites per individual ranged from 34 to 72. Species typically associated with periodontitis and caries were not detected. There is a distinctive predominant bacterial flora of the healthy oral cavity that is highly diverse and site and subject specific. It is important to fully define the human microflora of the healthy oral cavity before we can understand the role of bacteria in oral disease.

2,683 citations

Journal ArticleDOI
TL;DR: The HOMD is the first curated description of a human-associated microbiome and provides tools for use in understanding the role of the microbiome in health and disease.
Abstract: The human oral cavity contains a number of different habitats, including the teeth, gingival sulcus, tongue, cheeks, hard and soft palates, and tonsils, which are colonized by bacteria. The oral microbiome is comprised of over 600 prevalent taxa at the species level, with distinct subsets predominating at different habitats. The oral microbiome has been extensively characterized by cultivation and culture-independent molecular methods such as 16S rRNA cloning. Unfortunately, the vast majority of unnamed oral taxa are referenced by clone numbers or 16S rRNA GenBank accession numbers, often without taxonomic anchors. The first aim of this research was to collect 16S rRNA gene sequences into a curated phylogeny-based database, the Human Oral Microbiome Database (HOMD), and make it web accessible (www.homd.org). The HOMD includes 619 taxa in 13 phyla, as follows: Actinobacteria, Bacteroidetes, Chlamydiae, Chloroflexi, Euryarchaeota, Firmicutes, Fusobacteria, Proteobacteria, Spirochaetes, SR1, Synergistetes, Tenericutes, and TM7. The second aim was to analyze 36,043 16S rRNA gene clones isolated from studies of the oral microbiota to determine the relative abundance of taxa and identify novel candidate taxa. The analysis identified 1,179 taxa, of which 24% were named, 8% were cultivated but unnamed, and 68% were uncultivated phylotypes. Upon validation, 434 novel, nonsingleton taxa will be added to the HOMD. The number of taxa needed to account for 90%, 95%, or 99% of the clones examined is 259, 413, and 875, respectively. The HOMD is the first curated description of a human-associated microbiome and provides tools for use in understanding the role of the microbiome in health and disease.

2,598 citations

Journal ArticleDOI
TL;DR: In this article, the authors updated the recommendations by the American Heart Association (AHA) for the prevention of infective endocarditis that were last published in 1997, and the purpose of this statement is to update the recommendations.
Abstract: Background— The purpose of this statement is to update the recommendations by the American Heart Association (AHA) for the prevention of infective endocarditis that were last published in 1997. Met...

2,132 citations

Journal ArticleDOI
TL;DR: The purpose of this study was to determine the bacterial diversity in the human subgingival plaque by using culture-independent molecular methods as part of an ongoing effort to obtain full 16S rRNA sequences for all cultivable and not-yet-cultivated species of human oral bacteria.
Abstract: The purpose of this study was to determine the bacterial diversity in the human subgingival plaque by using culture-independent molecular methods as part of an ongoing effort to obtain full 16S rRNA sequences for all cultivable and not-yet-cultivated species of human oral bacteria. Subgingival plaque was analyzed from healthy subjects and subjects with refractory periodontitis, adult periodontitis, human immunodeficiency virus periodontitis, and acute necrotizing ulcerative gingivitis. 16S ribosomal DNA (rDNA) bacterial genes from DNA isolated from subgingival plaque samples were PCR amplified with all-bacterial or selective primers and cloned into Escherichia coli. The sequences of cloned 16S rDNA inserts were used to determine species identity or closest relatives by comparison with sequences of known species. A total of 2,522 clones were analyzed. Nearly complete sequences of approximately 1,500 bases were obtained for putative new species. About 60% of the clones fell into 132 known species, 70 of which were identified from multiple subjects. About 40% of the clones were novel phylotypes. Of the 215 novel phylotypes, 75 were identified from multiple subjects. Known putative periodontal pathogens such as Porphyromonas gingivalis, Bacteroides forsythus, and Treponema denticola were identified from multiple subjects, but typically as a minor component of the plaque as seen in cultivable studies. Several phylotypes fell into two recently described phyla previously associated with extreme natural environments, for which there are no cultivable species. A number of species or phylotypes were found only in subjects with disease, and a few were found only in healthy subjects. The organisms identified only from diseased sites deserve further study as potential pathogens. Based on the sequence data in this study, the predominant subgingival microbial community consisted of 347 species or phylotypes that fall into 9 bacterial phyla. Based on the 347 species seen in our sample of 2,522 clones, we estimate that there are 68 additional unseen species, for a total estimate of 415 species in the subgingival plaque. When organisms found on other oral surfaces such as the cheek, tongue, and teeth are added to this number, the best estimate of the total species diversity in the oral cavity is approximately 500 species, as previously proposed.

1,899 citations