scispace - formally typeset
Search or ask a question
Author

Susan Lindquist

Bio: Susan Lindquist is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Heat shock protein & Saccharomyces cerevisiae. The author has an hindex of 147, co-authored 440 publications receiving 81067 citations. Previous affiliations of Susan Lindquist include University of Illinois at Chicago & Howard Hughes Medical Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: Comprehensive understanding of how HSP90 functions promises not only to provide new avenues for therapeutic intervention, but to shed light on fundamental biological questions.
Abstract: Heat shock protein 90 (HSP90) is a highly conserved molecular chaperone that facilitates the maturation of a wide range of proteins (known as clients). Clients are enriched in signal transducers, including kinases and transcription factors. Therefore, HSP90 regulates diverse cellular functions and exerts marked effects on normal biology, disease and evolutionary processes. Recent structural and functional analyses have provided new insights on the transcriptional and biochemical regulation of HSP90 and the structural dynamics it uses to act on a diverse client repertoire. Comprehensive understanding of how HSP90 functions promises not only to provide new avenues for therapeutic intervention, but to shed light on fundamental biological questions.

1,633 citations

Journal ArticleDOI
10 Jul 1998-Cell
TL;DR: It is concluded that Hsp104 has a protein remodeling activity that acts on trapped, aggregated proteins and requires specific interactions with conventional chaperones to promote refolding of the intermediates it produces.

1,360 citations

Journal ArticleDOI
21 Jul 2006-Science
TL;DR: Elevated expression of Rab1, the mammalian YPT1 homolog, protected against αSyn-induced dopaminergic neuron loss in animal models of PD, suggesting synucleinopathies may result from disruptions in basic cellular functions that interface with the unique biology of particular neurons to make them especially vulnerable.
Abstract: Alpha-synuclein (αSyn) misfolding is associated with several devastating neurodegenerative disorders, including Parkinson9s disease (PD). In yeast cells and in neurons αSyn accumulation is cytotoxic, but little is known about its normal function or pathobiology. The earliest defect following αSyn expression in yeast was a block in endoplasmic reticulum (ER)–to–Golgi vesicular trafficking. In a genomewide screen, the largest class of toxicity modifiers were proteins functioning at this same step, including the Rab guanosine triphosphatase Ypt1p, which associated with cytoplasmic αSyn inclusions. Elevated expression of Rab1, the mammalian YPT1 homolog, protected against αSyn-induced dopaminergic neuron loss in animal models of PD. Thus, synucleinopathies may result from disruptions in basic cellular functions that interface with the unique biology of particular neurons to make them especially vulnerable.

1,314 citations

Journal ArticleDOI
06 Jun 2002-Nature
TL;DR: It is reported that, in Arabidopsis accessions and recombinant inbred lines, reducing Hsp90 function produces an array of morphological phenotypes, which are dependent on underlying genetic variation, and that HSp90 influences morphogenetic responses to environmental cues and buffers normal development from destabilizing effects of stochastic processes.
Abstract: Heat-shock protein 90 (Hsp90) chaperones the maturation of many regulatory proteins and, in the fruitfly Drosophila melanogaster, buffers genetic variation in morphogenetic pathways. Levels and patterns of genetic variation differ greatly between obligatorily outbreeding species such as fruitflies and self-fertilizing species such as the plant Arabidopsis thaliana. Also, plant development is more plastic, being coupled to environmental cues. Here we report that, in Arabidopsis accessions and recombinant inbred lines, reducing Hsp90 function produces an array of morphological phenotypes, which are dependent on underlying genetic variation. The strength and breadth of Hsp90's effects on the buffering and release of genetic variation suggests it may have an impact on evolutionary processes. We also show that Hsp90 influences morphogenetic responses to environmental cues and buffers normal development from destabilizing effects of stochastic processes. Manipulating Hsp90's buffering capacity offers a tool for harnessing cryptic genetic variation and for elucidating the interplay between genotypes, environments and stochastic events in the determination of phenotype.

1,307 citations

Journal ArticleDOI
12 May 1995-Science
TL;DR: It is reported that an intermediate amount of the chaperone protein Hsp104 was required for the propagation of the yeast non-Mendelian factor [psi+], and that a certain level of chaper one expression can cure cells of prions without affecting viability.
Abstract: The yeast non-Mendelian factor [psi+] has been suggested to be a self-modified protein analogous to mammalian prions. Here it is reported that an intermediate amount of the chaperone protein Hsp104 was required for the propagation of the [psi+] factor. Over-production or inactivation of Hsp104 caused the loss of [psi+]. These results suggest that chaperone proteins play a role in prion-like phenomena, and that a certain level of chaperone expression can cure cells of prions without affecting viability. This may lead to antiprion treatments that involve the alteration of chaperone amounts or activity.

1,029 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The latest version of STRING more than doubles the number of organisms it covers, and offers an option to upload entire, genome-wide datasets as input, allowing users to visualize subsets as interaction networks and to perform gene-set enrichment analysis on the entire input.
Abstract: Proteins and their functional interactions form the backbone of the cellular machinery. Their connectivity network needs to be considered for the full understanding of biological phenomena, but the available information on protein-protein associations is incomplete and exhibits varying levels of annotation granularity and reliability. The STRING database aims to collect, score and integrate all publicly available sources of protein-protein interaction information, and to complement these with computational predictions. Its goal is to achieve a comprehensive and objective global network, including direct (physical) as well as indirect (functional) interactions. The latest version of STRING (11.0) more than doubles the number of organisms it covers, to 5090. The most important new feature is an option to upload entire, genome-wide datasets as input, allowing users to visualize subsets as interaction networks and to perform gene-set enrichment analysis on the entire input. For the enrichment analysis, STRING implements well-known classification systems such as Gene Ontology and KEGG, but also offers additional, new classification systems based on high-throughput text-mining as well as on a hierarchical clustering of the association network itself. The STRING resource is available online at https://string-db.org/.

10,584 citations

Journal ArticleDOI
TL;DR: A set of tools for Cas9-mediated genome editing via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, as well as generation of modified cell lines for downstream functional studies are described.
Abstract: Targeted nucleases are powerful tools for mediating genome alteration with high precision. The RNA-guided Cas9 nuclease from the microbial clustered regularly interspaced short palindromic repeats (CRISPR) adaptive immune system can be used to facilitate efficient genome engineering in eukaryotic cells by simply specifying a 20-nt targeting sequence within its guide RNA. Here we describe a set of tools for Cas9-mediated genome editing via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, as well as generation of modified cell lines for downstream functional studies. To minimize off-target cleavage, we further describe a double-nicking strategy using the Cas9 nickase mutant with paired guide RNAs. This protocol provides experimentally derived guidelines for the selection of target sites, evaluation of cleavage efficiency and analysis of off-target activity. Beginning with target design, gene modifications can be achieved within as little as 1-2 weeks, and modified clonal cell lines can be derived within 2-3 weeks.

8,663 citations

Journal ArticleDOI
01 Apr 2012-Fly
TL;DR: It appears that the 5′ and 3′ UTRs are reservoirs for genetic variations that changes the termini of proteins during evolution of the Drosophila genus.
Abstract: We describe a new computer program, SnpEff, for rapidly categorizing the effects of variants in genome sequences. Once a genome is sequenced, SnpEff annotates variants based on their genomic locations and predicts coding effects. Annotated genomic locations include intronic, untranslated region, upstream, downstream, splice site, or intergenic regions. Coding effects such as synonymous or non-synonymous amino acid replacement, start codon gains or losses, stop codon gains or losses, or frame shifts can be predicted. Here the use of SnpEff is illustrated by annotating ~356,660 candidate SNPs in ~117 Mb unique sequences, representing a substitution rate of ~1/305 nucleotides, between the Drosophila melanogaster w1118; iso-2; iso-3 strain and the reference y1; cn1 bw1 sp1 strain. We show that ~15,842 SNPs are synonymous and ~4,467 SNPs are non-synonymous (N/S ~0.28). The remaining SNPs are in other categories, such as stop codon gains (38 SNPs), stop codon losses (8 SNPs), and start codon gains (297 SNPs) in...

8,017 citations

Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations