scispace - formally typeset
Search or ask a question
Author

Susan Lindquist

Bio: Susan Lindquist is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Heat shock protein & Saccharomyces cerevisiae. The author has an hindex of 147, co-authored 440 publications receiving 81067 citations. Previous affiliations of Susan Lindquist include University of Illinois at Chicago & Howard Hughes Medical Institute.


Papers
More filters
Patent
13 Sep 2007
TL;DR: Using the Sup35 prion proteins of two distantly related yeast species, it was established that prion replication is initiated by small elements of primary sequence, which can be identified using arrays of short peptides as mentioned in this paper.
Abstract: Using the Sup35 prion proteins of two distantly related yeast species, it is established that prion replication is initiated by small elements of primary sequence, which can be identified using arrays of short peptides. Subtle differences in replication elements govern the formation of distinct aggregate conformations (prion strains) and also determine their species-specific seeding activities. A Sup35 chimera that promiscuously forms prions in more than one species does so by virtue of carrying the replication element of each species. Mutations or conditions that cause the chimera to assemble into distinct prion strains favor recognition of distinct replication elements. Therefore, subtle differences in small sequences that constitute prion replication elements encode important determinants of prion propagation and transmission. The protein aggregation domains, methods for identification thereof, and polypeptides and higher order aggregates including the protein interaction domains, as well as arrays including peptides derived from an aggregation-prone polypeptide are provided.

3 citations

01 Jun 2013
TL;DR: The method allows determination of target specificities of both ATP-competitive and allosteric inhibitors in the kinases' native cellular context in high throughput and is applicable to other chaperones and target classes by assaying HSP70/steroid hormone receptor and CDC37/kinase interactions, suggesting that chaperone interactions will have broad application in detecting drug-target interactions in vivo.
Abstract: Determining the specificity of small molecules is important for research scientists, medicinal chemists, clinicians and their patients alike. In the laboratory, small-molecule drugs are commonly used as chemical probes, and the meaningful interpretation of the results of such experiments requires detailed knowledge of a drug’s targets. In the pharmaceutical industry, target profiling can be used to identify candidate targets for compounds discovered in cell-based screens and to guide medicinal chemistry efforts to obtain a favorable target spectrum during lead compound optimization. In the clinic, experimental drugs often show unexpected efficacy or toxicity that can sometimes be explained through more thorough target profiling. Moreover, identification of additional targets of an approved drug with a previously established safety profile can facilitate its rapid repurposing to new diseases. The protein kinase family illustrates the challenges inherent to target profiling. Almost all protein kinases share the same conserved fold, and, consequently, developing inhibitors that are both highly potent and highly selective has proven difficult1,2. Given the pharmaceutical interest in drugging protein kinases, several high-throughput methods have been developed for profiling inhibitor specificities in vitro3–8. However, the correlation between in vitro results and in vivo efficacy has often been disappointing9,10. Chemical proteomicsbased approaches have shown considerable promise for inhibitor profiling11,12. However, they are not well suited to profiling allosteric inhibitors, which are not competitive with the ATP site–directed labeling agents employed by these methods. Currently, no assays combine the benefits of in vitro assays (high throughput) with those of in vivo approaches (relevant cellular context). We recently developed a quantitative protein-protein interaction assay to survey the association of the HSP90 chaperone and its CDC37 co-chaperone with the majority of human kinases in vivo1. We established that one of the main determinants of HSP90’s association with a particular kinase is the thermal stability of the kinase domain. Here, we exploit this finding and use HSP90 and CDC37 as thermodynamic sensors for profiling small molecule–kinase interactions in living cells. We further demonstrate that this assay is not limited to kinases as targets and HSP90 or CDC37 as sensors, suggesting a more general approach for probing small molecule–target interactions.

3 citations

Patent
09 Jun 2000
TL;DR: In this article, the authors present novel polypeptides comprising a prion-aggregation domain and a second domain; novel polynucleotides encoding such polypeptic codes; host cells transformed or transfected with such polynuclear codes; and methods of making and using the foregoing.
Abstract: The present invention provides novel polypeptides comprising a prion-aggregation domain and a second domain; novel polynucleotides encoding such polypeptides; host cells transformed or transfected with such polynucleotides; and methods of making and using the foregoing.

3 citations

Patent
17 Mar 2014
TL;DR: The present paper as discussed by the authors provides novel compounds of Formula (I), and pharmaceutically acceptable salts, solvates, hydrates, polymorphs, co-crystals, tautomers, stereoisomers, isotopically labeled derivatives, prodrugs, and pharmaceutical compositions thereof.
Abstract: The present invention provides novel compounds of Formula (I), and pharmaceutically acceptable salts, solvates, hydrates, polymorphs, co-crystals, tautomers, stereoisomers, isotopically labeled derivatives, prodrugs, and pharmaceutical compositions thereof. The present invention also provides methods and kits using the inventive compounds and pharmaceutical compositions for treating and/or preventing diseases associated with protein aggregation, such as amyloidoses (e.g., Parkinson's disease and Alzheimer's disease), treating and/or preventing neurodegenerative diseases, treating and/or preventing diseases associated with Tar DNA binding protein 43 kDa, reducing or preventing protein aggregation, and/or modulating E3 ubiquitin ligase in a subject in need thereof.

2 citations

Journal ArticleDOI
TL;DR: In this interview, Dr. Lindquist describes relationships between protein folding, prion diseases and neurodegenerative disorders, and current experimental approaches to investigate the mechanism of neurodegnerative diseases based on genetic studies in model organisms.
Abstract: In this interview, Dr. Lindquist describes relationships between protein folding, prion diseases and neurodegenerative disorders. The problem of the protein folding is at the core of the modern biology. In addition to their traditional biochemical functions, proteins can mediate transfer of biological information and therefore can be considered a genetic material. This recently discovered function of proteins has important implications for studies of human disorders. Dr. Lindquist also describes current experimental approaches to investigate the mechanism of neurodegenerative diseases based on genetic studies in model organisms.

2 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The latest version of STRING more than doubles the number of organisms it covers, and offers an option to upload entire, genome-wide datasets as input, allowing users to visualize subsets as interaction networks and to perform gene-set enrichment analysis on the entire input.
Abstract: Proteins and their functional interactions form the backbone of the cellular machinery. Their connectivity network needs to be considered for the full understanding of biological phenomena, but the available information on protein-protein associations is incomplete and exhibits varying levels of annotation granularity and reliability. The STRING database aims to collect, score and integrate all publicly available sources of protein-protein interaction information, and to complement these with computational predictions. Its goal is to achieve a comprehensive and objective global network, including direct (physical) as well as indirect (functional) interactions. The latest version of STRING (11.0) more than doubles the number of organisms it covers, to 5090. The most important new feature is an option to upload entire, genome-wide datasets as input, allowing users to visualize subsets as interaction networks and to perform gene-set enrichment analysis on the entire input. For the enrichment analysis, STRING implements well-known classification systems such as Gene Ontology and KEGG, but also offers additional, new classification systems based on high-throughput text-mining as well as on a hierarchical clustering of the association network itself. The STRING resource is available online at https://string-db.org/.

10,584 citations

Journal ArticleDOI
TL;DR: A set of tools for Cas9-mediated genome editing via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, as well as generation of modified cell lines for downstream functional studies are described.
Abstract: Targeted nucleases are powerful tools for mediating genome alteration with high precision. The RNA-guided Cas9 nuclease from the microbial clustered regularly interspaced short palindromic repeats (CRISPR) adaptive immune system can be used to facilitate efficient genome engineering in eukaryotic cells by simply specifying a 20-nt targeting sequence within its guide RNA. Here we describe a set of tools for Cas9-mediated genome editing via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, as well as generation of modified cell lines for downstream functional studies. To minimize off-target cleavage, we further describe a double-nicking strategy using the Cas9 nickase mutant with paired guide RNAs. This protocol provides experimentally derived guidelines for the selection of target sites, evaluation of cleavage efficiency and analysis of off-target activity. Beginning with target design, gene modifications can be achieved within as little as 1-2 weeks, and modified clonal cell lines can be derived within 2-3 weeks.

8,663 citations

Journal ArticleDOI
01 Apr 2012-Fly
TL;DR: It appears that the 5′ and 3′ UTRs are reservoirs for genetic variations that changes the termini of proteins during evolution of the Drosophila genus.
Abstract: We describe a new computer program, SnpEff, for rapidly categorizing the effects of variants in genome sequences. Once a genome is sequenced, SnpEff annotates variants based on their genomic locations and predicts coding effects. Annotated genomic locations include intronic, untranslated region, upstream, downstream, splice site, or intergenic regions. Coding effects such as synonymous or non-synonymous amino acid replacement, start codon gains or losses, stop codon gains or losses, or frame shifts can be predicted. Here the use of SnpEff is illustrated by annotating ~356,660 candidate SNPs in ~117 Mb unique sequences, representing a substitution rate of ~1/305 nucleotides, between the Drosophila melanogaster w1118; iso-2; iso-3 strain and the reference y1; cn1 bw1 sp1 strain. We show that ~15,842 SNPs are synonymous and ~4,467 SNPs are non-synonymous (N/S ~0.28). The remaining SNPs are in other categories, such as stop codon gains (38 SNPs), stop codon losses (8 SNPs), and start codon gains (297 SNPs) in...

8,017 citations

Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations