scispace - formally typeset
Search or ask a question
Author

Susanna Lualdi

Bio: Susanna Lualdi is an academic researcher from Istituto Giannina Gaslini. The author has contributed to research in topics: Gene & Mucopolysaccharidosis type II. The author has an hindex of 13, co-authored 24 publications receiving 437 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This study, reporting one of the largest genotype‐phenotype analyses of the GALC gene so far performed in a European Krabbe disease cohort, revealed that the Italian G ALC mutational profile differs significantly from other populations of European origin.
Abstract: The characterization of the underlying GALC gene lesions was performed in 30 unrelated patients affected by Krabbe disease, an autosomal recessive leukodystrophy caused by the deficiency of lysosomal enzyme galactocerebrosidase. The GALC mutational spectrum comprised 33 distinct mutant (including 15 previously unreported) alleles. With the exception of 4 novel missense mutations that replaced evolutionarily highly conserved residues (p.P318R, p.G323R, p.I384T, p.Y490N), most of the newly described lesions altered mRNA processing. These included 7 frameshift mutations (c.61delG, c.408delA, c.521delA, c.1171_1175delCATTCinsA, c.1405_1407delCTCinsT, c.302_308dupAAATAGG, c.1819_1826dupGTTACAGG), 3 nonsense mutations (p.R69X, p.K88X, p.R127X) one of which (p.K88X) mediated the skipping of exon 2, and a splicing mutation (c.1489+1G>A) which induced the partial skipping of exon 13. In addition, 6 previously unreported GALC polymorphisms were identified. The functional significance of the novel GALC missense mutations and polymorphisms was investigated using the MutPred analysis tool. This study, reporting one of the largest genotype-phenotype analyses of the GALC gene so far performed in a European Krabbe disease cohort, revealed that the Italian GALC mutational profile differs significantly from other populations of European origin. This is due in part to a GALC missense substitution (p.G553R) that occurs at high frequency on a common founder haplotype background in patients originating from the Naples region.

93 citations

Journal ArticleDOI
TL;DR: The information reviewed in this article, providing new insights into the genotype/phenotype correlation, is extremely valuable to facilitate diagnosis and genetic counseling of families affected by NPA/B.
Abstract: Niemann-Pick Types A and B (NPA/B) diseases are autosomal recessive lysosomal storage disorders caused by the deficient activity of acid sphingomyelinase (ASM) because of the mutations in the SMPD1 gene. Here, we provide a comprehensive updated review of already reported and newly identified SMPD1 variants. Among them, 185 have been found in NPA/B patients. Disease-causing variants are equally distributed along the SMPD1 gene; most of them are missense (65.4%) or frameshift (19%) mutations. The most frequently reported mutation worldwide is the p.R610del, clearly associated with an attenuated NP disease type B phenotype. The available information about the impact of 52 SMPD1 variants on ASM mRNA and/or enzymatic activity has been collected and whenever possible, phenotype/genotype correlations were established. In addition, we created a locus-specific database easily accessible at http://www.inpdr.org/genes that catalogs the 417 SMPD1 variants reported to date and provides data on their in silico predicted effects on ASM protein function or mRNA splicing. The information reviewed in this article, providing new insights into the genotype/phenotype correlation, is extremely valuable to facilitate diagnosis and genetic counseling of families affected by NPA/B.

59 citations

Journal ArticleDOI
TL;DR: The Bioresource, presently storing 10,279 biospecimens, was initially established in 1976 as a private laboratory-collection to maintain rare mutant cell lines from genetic-metabolic diseases.
Abstract: The Bioresource, presently storing 10,279 biospecimens, was initially established in 1976 as a private laboratory-collection to maintain rare mutant cell lines from genetic-metabolic diseases. Shortly afterwards, however, data from the sample collection was organised in a database and the sample collection was released to the scientific community. The Biobank has received Telethon grants since 1993, as individual facility, and from 2008 as part of the Telethon Network of Genetic Biobanks ( www.biobanknetwork.org ). In 2010, the Biobank has obtained official recognition from Regione Liguria. The Biobank has always provided essential services by establishing, analysing, maintaining, and distributing biospecimens from patients affected by rare genetic diseases. Up to now, the contribution of the Biobank to the scientific community has been expressed in acknowledgement notes in 145 scientific manuscripts.

40 citations

Journal ArticleDOI
TL;DR: A rapid PCR‐based method set up to detect possible gene/pseudogene recombinations among a series of Italian male patients who had negative results in the mutation analysis of the IDS gene, and can be utilized effectively in the absence of the patients' cDNA, as well as for carrier detection among female family members.
Abstract: Various types of complex genetic rearrangements involving the iduronate-2-sulfatase (IDS) and its homologous pseudogene (IDS2, IDSP1) have so far been reported as the cause of Mucopolysaccharidosis type II (MPS2 or MPS II; Hunter syndrome). When using conventional mutational analyses, the occurrence in intronic regions of these rearrangements can be misleading. Here, we describe a rapid PCR-based method set up to detect possible gene/pseudogene recombinations among a series of Italian male patients who had negative results in the mutation analysis of the IDS gene. Our approach selected eight unrelated patients showing recombinations. The characterization of the proximal regions containing the breakpoints in the eight patients identified four different rearrangements due to both inversion and conversion events. Comparison of our data with previous publications confirmed that the recombinations between the IDS gene and the IDS2 pseudogene result from separate events, considering their occurrence at different positions within the same "hotspot" genomic region in unrelated patients. The RT-PCR analysis of the available cDNAs pointed out the different effects of similar rearrangements on the expression of the IDS gene. This method can be utilized effectively in the absence of the patients' cDNA, as well as for carrier detection among female family members. This advantageous approach reduces costs, is less time-consuming, and requires a smaller DNA quantity in comparison to the Southern blot hybridization technique often utilized for such complex rearrangements.

34 citations

Journal ArticleDOI
TL;DR: Of the 29 different alleles identified, fourteen were due to 15 novel mutations, two being in‐cis on a new complex allele, and the new alleles caused four frameshifts, three premature stop codons, three amino acid changes, two amino acid deletions and two splicing alterations.
Abstract: Tay-Sachs disease (TSD) is a recessively inherited disorder caused by the hexosaminidase A deficiency. We report the molecular characterization performed on 31 Italian patients, 22 with the infantile, acute form of TSD and nine patients with the subacute juvenile form, biochemically classified as B1 Variant. Of the 29 different alleles identified, fourteen were due to 15 novel mutations, two being in-cis on a new complex allele. The new alleles caused four frameshifts, three premature stop codons, three amino acid changes, two amino acid deletions and two splicing alterations. As previously reported, the c.533G>A (p.R178H) mutation was present either in homozygosity or as compound heterozygote, in all the patients with the late onset TSD form (B1 Variant); the allele frequency in this group is discussed by comparison with that found in infantile TSD. © 2005 Wiley-Liss, Inc.

34 citations


Cited by
More filters
Journal ArticleDOI
22 Nov 2012-Nature
TL;DR: The results identify the nucleus as a previously unknown cellular organelle in Parkinson’s disease pathology and may help to open new avenues for Parkinson's disease diagnoses as well as for the potential development of therapeutics targeting this fundamental cell structure.
Abstract: Nuclear-architecture defects have been shown to correlate with the manifestation of a number of human diseases as well as ageing. It is therefore plausible that diseases whose manifestations correlate with ageing might be connected to the appearance of nuclear aberrations over time. We decided to evaluate nuclear organization in the context of ageing-associated disorders by focusing on a leucine-rich repeat kinase 2 (LRRK2) dominant mutation (G2019S; glycine-to-serine substitution at amino acid 2019), which is associated with familial and sporadic Parkinson's disease as well as impairment of adult neurogenesis in mice. Here we report on the generation of induced pluripotent stem cells (iPSCs) derived from Parkinson's disease patients and the implications of LRRK2(G2019S) mutation in human neural-stem-cell (NSC) populations. Mutant NSCs showed increased susceptibility to proteasomal stress as well as passage-dependent deficiencies in nuclear-envelope organization, clonal expansion and neuronal differentiation. Disease phenotypes were rescued by targeted correction of the LRRK2(G2019S) mutation with its wild-type counterpart in Parkinson's disease iPSCs and were recapitulated after targeted knock-in of the LRRK2(G2019S) mutation in human embryonic stem cells. Analysis of human brain tissue showed nuclear-envelope impairment in clinically diagnosed Parkinson's disease patients. Together, our results identify the nucleus as a previously unknown cellular organelle in Parkinson's disease pathology and may help to open new avenues for Parkinson's disease diagnoses as well as for the potential development of therapeutics targeting this fundamental cell structure.

306 citations

Journal ArticleDOI
TL;DR: The clinical characteristics and molecular genetics of the more common autosomal recessive ataxias are discussed and a framework for assessment and differential diagnosis of patients with these disorders is provided.
Abstract: Summary Among the hereditary ataxias, autosomal recessive spinocerebellar ataxias comprise a diverse group of neurodegenerative disorders. Clinical phenotypes vary from predominantly cerebellar syndromes to sensorimotor neuropathy, ophthalmological disturbances, involuntary movements, seizures, cognitive dysfunction, skeletal anomalies, and cutaneous disorders, among others. Molecular pathogenesis also ranges from disorders of mitochondrial or cellular metabolism to impairments of DNA repair or RNA processing functions. Diagnosis can be improved by a systematic approach to the categorisation of these disorders, which is used to direct further, more specific, biochemical and genetic investigations. In this Review, we discuss the clinical characteristics and molecular genetics of the more common autosomal recessive ataxias and provide a framework for assessment and differential diagnosis of patients with these disorders.

246 citations

Journal ArticleDOI
TL;DR: The potential application and outstanding issues on the use of diffusion tensor imaging directional diffusivity as a biomarker in axonal and myelin damage in neurological disorders will be reviewed.
Abstract: Diffusion tensor imaging has been used extensively as a research tool to understand the structural changes associated with white matter pathology. Using water diffusion as the basis to construct anatomic details, diffusion tensor imaging offers the potential to identify structural and functional adaptations before gross anatomical changes, such as lesions and tumors, become apparent on conventional MRI. Over the past 10 years, further parameters, such as axial and radial diffusivity, have been developed to characterize white matter changes specific to axons and myelin. In this paper, the potential application and outstanding issues on the use of diffusion tensor imaging directional diffusivity as a biomarker in axonal and myelin damage in neurological disorders will be reviewed.

232 citations

Journal ArticleDOI
TL;DR: It is explained how non-canonical splicing can lead to aberrant transcripts that cause many diseases, and also how it can be exploited for new therapeutic strategies.
Abstract: Recent improvements in experimental and computational techniques that are used to study the transcriptome have enabled an unprecedented view of RNA processing, revealing many previously unknown non-canonical splicing events. This includes cryptic events located far from the currently annotated exons and unconventional splicing mechanisms that have important roles in regulating gene expression. These non-canonical splicing events are a major source of newly emerging transcripts during evolution, especially when they involve sequences derived from transposable elements. They are therefore under precise regulation and quality control, which minimizes their potential to disrupt gene expression. We explain how non-canonical splicing can lead to aberrant transcripts that cause many diseases, and also how it can be exploited for new therapeutic strategies.

218 citations

Journal ArticleDOI
TL;DR: The first quantitation of the site and host specificities of major bacterial and fungal populations in human skin is provided and simple methods for their assessment in studies of disease are presented.
Abstract: Because the human skin microbiota may play roles in the causation or modification of skin diseases, we sought to provide initial quantitative analysis from different cutaneous locations. We developed quantitative PCRs to enumerate the total bacterial and fungal populations, as well as the most common bacterial and fungal genera present in six locales, in eight healthy subjects. We used a set of primers and TaqMan MGB probes based on the bacterial 16S rRNA and fungal internally transcribed spacer region, as well as bacterial genus-specific probes for Propionibacterium, Corynebacterium, Streptococcus, and Staphylococcus and a fungal genus-specific probe for Malassezia. The extent of human DNA contamination of the specimen was determined by quantitating the human housekeeping GAPDH gene. The highest level of 16S rRNA copies of bacteria was present in the axilla (4.44 ± 0.18 log10 copies/μl [mean ± standard error of the mean]), with normalization based on GAPDH levels, but the other five locations were similar to one another (range, 2.48 to 2.89 log10 copies/μl). There was strong symmetry between the left and right sides. The four bacterial genera accounted for 31% to 59% of total bacteria, with the highest percent composition in the axilla and the lowest in the forearm. Streptococcus was the most common genus present on the forehead and behind the ear. Corynebacterium spp. were predominant in the axilla. Fungal levels were 1 to 2 log10 lower than for bacteria, with Malassezia spp. accounting for the majority of fungal gene copies. These results provide the first quantitation of the site and host specificities of major bacterial and fungal populations in human skin and present simple methods for their assessment in studies of disease.

211 citations