scispace - formally typeset
Search or ask a question
Author

Susanna Monti

Bio: Susanna Monti is an academic researcher from Royal Institute of Technology. The author has contributed to research in topics: Molecular dynamics & ReaxFF. The author has an hindex of 30, co-authored 136 publications receiving 2966 citations. Previous affiliations of Susanna Monti include University of Pisa & University of Southern Denmark.


Papers
More filters
Journal ArticleDOI
TL;DR: The QM/MM method is presented, which introduces a quantum mechanically based linear response (LR) scheme to describe both chromophore electronic excitations and electronic couplings, while the environment is described through a classical polarizable force field.
Abstract: We present a combined quantum mechanics and molecular mechanics (QM/MM) method to study electronic energy transfer (EET) in condensed phases. The method introduces a quantum mechanically based linear response (LR) scheme to describe both chromophore electronic excitations and electronic couplings, while the environment is described through a classical polarizable force field. Explicit treatment of the solvent electronic polarization is a key aspect of the model, as this allows account of solvent screening effects in the coupling. The method is tested on a model perylene diimide (PDI) dimer in water solution. We find an excellent agreement between the QM/MM method and “exact” supermolecule calculations in which the complete solute−solvent system is described at the QM level. In addition, the estimation of the electronic coupling is shown to be very sensitive to the quality of the parameters used to describe solvent polarization. Finally, we compare ensemble-averaged QM/MM results to the predictions of the ...

241 citations

Journal ArticleDOI
TL;DR: Docking experiments showed a good correlation between the MG_MID Log GI(50) values of all these compounds and their calculated interaction energies with the colchicine binding site of alphabeta-tubulin.

111 citations

Journal ArticleDOI
TL;DR: It is shown that MD simulations of reasonable duration can describe the main characteristics of the peptide-TiO(2) surface interaction in solution, at least on a short time scale.
Abstract: Ab initio periodic calculations and classical molecular dynamics (MD) simulations were performed to investigate the adsorption mode of alanine and a number of short peptides, in particular two peptides, alanine-glutamic acid and alanine-lysine, taken as model systems for the ionic self-complementary oligopeptide EAK16-II, onto TiO(2) (110) rutile surface, and their conformational characteristics upon adsorption. The atomistic description of the rutile surface and its interactions with water and peptide molecules were based on ab initio calculations, the TIP3P water model, the AMBER force field, and available parameters. By comparison with ab initio calculations, it is shown that MD simulations of reasonable duration can describe the main characteristics of the peptide-TiO(2) surface interaction in solution, at least on a short time scale. Atom-atom radial distribution functions, atom-surface distances, backbone and side chain dihedral angle distributions, and peptide-surface interaction energies have been analyzed. Once adsorbed onto the TiO(2) rutile surface by a bidentate interaction of both carboxyl oxygens with two adjacent Ti atoms, the small peptide studied showed a clear propensity to remain there and undergo relatively limited hinge-bending motions.

111 citations

Journal ArticleDOI
TL;DR: A good agreement of ReaxFF predicted conformations and kinetics with reference data is obtained, and a reactive force field for peptide and protein simulations has been developed as an expansion of the previously reported glycine parameters.
Abstract: In order to describe possible reaction mechanisms involving amino acids, and the evolution of the protonation state of amino acid side chains in solution, a reactive force field (ReaxFF-based description) for peptide and protein simulations has been developed as an expansion of the previously reported glycine parameters. This expansion consists of adding to the training set more than five hundred molecular systems, including all the amino acids and some short peptide structures, which have been investigated by means of quantum mechanical calculations. The performance of this ReaxFF protein force field on a relatively short time scale (500 ps) is validated by comparison with classical non-reactive simulations and experimental data of well characterized test cases, comprising capped amino acids, peptides, and small proteins, and reaction mechanisms connected to the pharmaceutical sector. A good agreement of ReaxFF predicted conformations and kinetics with reference data is obtained.

110 citations

Journal ArticleDOI
TL;DR: Two popular and inexpensive approaches to model dispersion interactions are chosen, namely the semi-empirical dispersion correction (D3) and pseudopotential based (DCP) methodologies both in conjunction with the B3LYP functional, for simulating fully anharmonic IR spectra of nucleobases and their dimers.
Abstract: Computational spectroscopy techniques have become in the last few years an effective means to analyze and assign infrared (IR) spectra of molecular systems of increasing dimensions and in different environments. However, transition from compilation of harmonic data to fully anharmonic simulations of spectra is still underway. The most promising results for large systems have been obtained, in our opinion, by perturbative vibrational approaches based on potential energy surfaces computed by hybrid (especially B3LYP) density functionals and medium size (e.g. SNSD) basis sets. In this framework, we are actively developing a comprehensive and robust computational protocol aimed at quantitative reproduction of the spectra of nucleic acid base complexes and their adsorption on solid supports (organic/inorganic). In this contribution we report the essential results of the first step devoted to isolated monomers and dimers. It is well known that in order to model the vibrational spectra of weakly bound molecular complexes dispersion interactions should be taken into proper account. In this work we have chosen two popular and inexpensive approaches to model dispersion interactions, namely the semi-empirical dispersion correction (D3) and pseudopotential based (DCP) methodologies both in conjunction with the B3LYP functional. These have been used for simulating fully anharmonic IR spectra of nucleobases and their dimers through generalized second order vibrational perturbation theory (GVPT2). We have studied, in particular, isolated adenine, hypoxanthine, uracil, thymine and cytosine, the hydrogen-bonded and stacked adenine and uracil dimers, and the stacked adenine–naphthalene heterodimer. Anharmonic frequencies are compared with standard B3LYP results and experimental findings, while the computed interaction energies and structures of complexes are compared to the best available theoretical estimates.

86 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-modelling procedure called "Continuum Methods within MD and MC Simulations 3072", which automates the very labor-intensive and therefore time-heavy and expensive process of integrating discrete and continuous components into a discrete-time model.
Abstract: 6.2.2. Definition of Effective Properties 3064 6.3. Response Properties to Magnetic Fields 3066 6.3.1. Nuclear Shielding 3066 6.3.2. Indirect Spin−Spin Coupling 3067 6.3.3. EPR Parameters 3068 6.4. Properties of Chiral Systems 3069 6.4.1. Electronic Circular Dichroism (ECD) 3069 6.4.2. Optical Rotation (OR) 3069 6.4.3. VCD and VROA 3070 7. Continuum and Discrete Models 3071 7.1. Continuum Methods within MD and MC Simulations 3072

13,286 citations

01 Dec 1991
TL;DR: In this article, self-assembly is defined as the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds.
Abstract: Molecular self-assembly is the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds. Molecular self-assembly is ubiquitous in biological systems and underlies the formation of a wide variety of complex biological structures. Understanding self-assembly and the associated noncovalent interactions that connect complementary interacting molecular surfaces in biological aggregates is a central concern in structural biochemistry. Self-assembly is also emerging as a new strategy in chemical synthesis, with the potential of generating nonbiological structures with dimensions of 1 to 10(2) nanometers (with molecular weights of 10(4) to 10(10) daltons). Structures in the upper part of this range of sizes are presently inaccessible through chemical synthesis, and the ability to prepare them would open a route to structures comparable in size (and perhaps complementary in function) to those that can be prepared by microlithography and other techniques of microfabrication.

2,591 citations

01 Feb 1995
TL;DR: In this paper, the unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio using DFT, MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set.
Abstract: : The unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio. Harmonic force fields are obtained using Density Functional Theory (DFT), MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set. DFT calculations use the Local Spin Density Approximation (LSDA), BLYP, and Becke3LYP (B3LYP) density functionals. Mid-IR spectra predicted using LSDA, BLYP, and B3LYP force fields are of significantly different quality, the B3LYP force field yielding spectra in clearly superior, and overall excellent, agreement with experiment. The MP2 force field yields spectra in slightly worse agreement with experiment than the B3LYP force field. The SCF force field yields spectra in poor agreement with experiment.The basis set dependence of B3LYP force fields is also explored: the 6-31G* and TZ2P basis sets give very similar results while the 3-21G basis set yields spectra in substantially worse agreements with experiment. jg

1,652 citations

Journal ArticleDOI
TL;DR: This tutorial review shows how Time-Dependent Density Functional Theory has become a popular tool for computing the signatures of electronically excited states, and more specifically, the properties directly related to the optical spectra of molecules.
Abstract: In this tutorial review, we show how Time-Dependent Density Functional Theory (TD-DFT) has become a popular tool for computing the signatures of electronically excited states, and more specifically, the properties directly related to the optical (absorption and emission) spectra of molecules. We discuss the properties that can be obtained with widely available programs as well as how to account for the environmental effects (solvent and surfaces) and present recent applications in these fields. We next expose the transformation of the TD-DFT results into chemically intuitive parameters (colours as well as charge-transfer distances). Eventually, the non-specialised reader will find a series of advices and warnings necessary to perform her/his first TD-DFT calculations.

1,288 citations