scispace - formally typeset
Search or ask a question
Author

Sushmita Mitra

Bio: Sushmita Mitra is an academic researcher from Indian Statistical Institute. The author has contributed to research in topics: Rough set & Fuzzy logic. The author has an hindex of 37, co-authored 156 publications receiving 9727 citations. Previous affiliations of Sushmita Mitra include Eastman Kodak Company & Meiji University.


Papers
More filters
Journal ArticleDOI
01 May 2007
TL;DR: A survey on gesture recognition with particular emphasis on hand gestures and facial expressions is provided, and applications involving hidden Markov models, particle filtering and condensation, finite-state machines, optical flow, skin color, and connectionist models are discussed in detail.
Abstract: Gesture recognition pertains to recognizing meaningful expressions of motion by a human, involving the hands, arms, face, head, and/or body. It is of utmost importance in designing an intelligent and efficient human-computer interface. The applications of gesture recognition are manifold, ranging from sign language through medical rehabilitation to virtual reality. In this paper, we provide a survey on gesture recognition with particular emphasis on hand gestures and facial expressions. Applications involving hidden Markov models, particle filtering and condensation, finite-state machines, optical flow, skin color, and connectionist models are discussed in detail. Existing challenges and future research possibilities are also highlighted

1,797 citations

Posted ContentDOI
Spyridon Bakas1, Mauricio Reyes, Andras Jakab2, Stefan Bauer3  +435 moreInstitutions (111)
TL;DR: This study assesses the state-of-the-art machine learning methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e., 2012-2018, and investigates the challenge of identifying the best ML algorithms for each of these tasks.
Abstract: Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic core, active and non-enhancing core. This intrinsic heterogeneity is also portrayed in their radio-phenotype, as their sub-regions are depicted by varying intensity profiles disseminated across multi-parametric magnetic resonance imaging (mpMRI) scans, reflecting varying biological properties. Their heterogeneous shape, extent, and location are some of the factors that make these tumors difficult to resect, and in some cases inoperable. The amount of resected tumoris a factor also considered in longitudinal scans, when evaluating the apparent tumor for potential diagnosis of progression. Furthermore, there is mounting evidence that accurate segmentation of the various tumor sub-regions can offer the basis for quantitative image analysis towards prediction of patient overall survival. This study assesses thestate-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e., 2012-2018. Specifically, we focus on i) evaluating segmentations of the various glioma sub-regions in pre-operative mpMRI scans, ii) assessing potential tumor progression by virtue of longitudinal growth of tumor sub-regions, beyond use of the RECIST/RANO criteria, and iii) predicting the overall survival from pre-operative mpMRI scans of patients that underwent gross tota lresection. Finally, we investigate the challenge of identifying the best ML algorithms for each of these tasks, considering that apart from being diverse on each instance of the challenge, the multi-institutional mpMRI BraTS dataset has also been a continuously evolving/growing dataset.

1,165 citations

Journal ArticleDOI
TL;DR: A fuzzy neural network model based on the multilayer perceptron, using the backpropagation algorithm, and capable of fuzzy classification of patterns is described, and the results are compared with those of the conventional MLP, the Bayes classifier, and other related models.
Abstract: A fuzzy neural network model based on the multilayer perceptron, using the backpropagation algorithm, and capable of fuzzy classification of patterns is described. The input vector consists of membership values to linguistic properties while the output vector is defined in terms of fuzzy class membership values. This allows efficient modeling of fuzzy uncertain patterns with appropriate weights being assigned to the backpropagated errors depending upon the membership values at the corresponding outputs. During training, the learning rate is gradually decreased in discrete steps until the network converges to a minimum error solution. The effectiveness of the algorithm is demonstrated on a speech recognition problem. The results are compared with those of the conventional MLP, the Bayes classifier, and other related models. >

1,031 citations

Journal ArticleDOI
TL;DR: This article proposes to bring the various neuro-fuzzy models used for rule generation under a unified soft computing framework, and includes both rule extraction and rule refinement in the broader perspective of rule generation.
Abstract: The present article is a novel attempt in providing an exhaustive survey of neuro-fuzzy rule generation algorithms. Rule generation from artificial neural networks is gaining in popularity in recent times due to its capability of providing some insight to the user about the symbolic knowledge embedded within the network. Fuzzy sets are an aid in providing this information in a more human comprehensible or natural form, and can handle uncertainties at various levels. The neuro-fuzzy approach, symbiotically combining the merits of connectionist and fuzzy approaches, constitutes a key component of soft computing at this stage. To date, there has been no detailed and integrated categorization of the various neuro-fuzzy models used for rule generation. We propose to bring these together under a unified soft computing framework. Moreover, we include both rule extraction and rule refinement in the broader perspective of rule generation. Rules learned and generated for fuzzy reasoning and fuzzy control are also considered from this wider viewpoint. Models are grouped on the basis of their level of neuro-fuzzy synthesis. Use of other soft computing tools like genetic algorithms and rough sets are emphasized. Rule generation from fuzzy knowledge-based networks, which initially encode some crude domain knowledge, are found to result in more refined rules. Finally, real-life application to medical diagnosis is provided.

726 citations

Journal ArticleDOI
TL;DR: A survey of the available literature on data mining using soft computing based on the different soft computing tools and their hybridizations used, the data mining function implemented, and the preference criterion selected by the model is provided.
Abstract: The present article provides a survey of the available literature on data mining using soft computing. A categorization has been provided based on the different soft computing tools and their hybridizations used, the data mining function implemented, and the preference criterion selected by the model. The utility of the different soft computing methodologies is highlighted. Generally fuzzy sets are suitable for handling the issues related to understandability of patterns, incomplete/noisy data, mixed media information and human interaction, and can provide approximate solutions faster. Neural networks are nonparametric, robust, and exhibit good learning and generalization capabilities in data-rich environments. Genetic algorithms provide efficient search algorithms to select a model, from mixed media data, based on some preference criterion/objective function. Rough sets are suitable for handling different types of uncertainty in data. Some challenges to data mining and the application of soft computing methodologies are indicated. An extensive bibliography is also included.

630 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

01 Jan 2006
TL;DR: There have been many data mining books published in recent years, including Predictive Data Mining by Weiss and Indurkhya [WI98], Data Mining Solutions: Methods and Tools for Solving Real-World Problems by Westphal and Blaxton [WB98], Mastering Data Mining: The Art and Science of Customer Relationship Management by Berry and Linofi [BL99].
Abstract: The book Knowledge Discovery in Databases, edited by Piatetsky-Shapiro and Frawley [PSF91], is an early collection of research papers on knowledge discovery from data. The book Advances in Knowledge Discovery and Data Mining, edited by Fayyad, Piatetsky-Shapiro, Smyth, and Uthurusamy [FPSSe96], is a collection of later research results on knowledge discovery and data mining. There have been many data mining books published in recent years, including Predictive Data Mining by Weiss and Indurkhya [WI98], Data Mining Solutions: Methods and Tools for Solving Real-World Problems by Westphal and Blaxton [WB98], Mastering Data Mining: The Art and Science of Customer Relationship Management by Berry and Linofi [BL99], Building Data Mining Applications for CRM by Berson, Smith, and Thearling [BST99], Data Mining: Practical Machine Learning Tools and Techniques by Witten and Frank [WF05], Principles of Data Mining (Adaptive Computation and Machine Learning) by Hand, Mannila, and Smyth [HMS01], The Elements of Statistical Learning by Hastie, Tibshirani, and Friedman [HTF01], Data Mining: Introductory and Advanced Topics by Dunham, and Data Mining: Multimedia, Soft Computing, and Bioinformatics by Mitra and Acharya [MA03]. There are also books containing collections of papers on particular aspects of knowledge discovery, such as Machine Learning and Data Mining: Methods and Applications edited by Michalski, Brakto, and Kubat [MBK98], and Relational Data Mining edited by Dzeroski and Lavrac [De01], as well as many tutorial notes on data mining in major database, data mining and machine learning conferences.

2,591 citations

Journal ArticleDOI
TL;DR: A detailed overview of current advances in vision-based human action recognition is provided, including a discussion of limitations of the state of the art and outline promising directions of research.

2,282 citations