scispace - formally typeset
Search or ask a question
Author

Sussan Nourshargh

Bio: Sussan Nourshargh is an academic researcher from Queen Mary University of London. The author has contributed to research in topics: Inflammation & Cell adhesion molecule. The author has an hindex of 59, co-authored 146 publications receiving 14197 citations. Previous affiliations of Sussan Nourshargh include National Institutes of Health & University of Cambridge.


Papers
More filters
Journal ArticleDOI
TL;DR: This Review focuses on new aspects of one of the central paradigms of inflammation and immunity — the leukocyte adhesion cascade.
Abstract: To get to the site of inflammation, leukocytes must first adhere to and traverse the blood-vessel wall, events that occur in a cascade-like manner. But what are the exact steps in this cascade and what molecules are involved?

3,917 citations

Journal ArticleDOI
20 Nov 2014-Immunity
TL;DR: Current knowledge and open questions regarding the mechanisms involved in the interactions of different effector leukocytes with peripheral vessels in extralymphoid organs are discussed.

810 citations

Journal ArticleDOI
Andrea Cossarizza1, Hyun-Dong Chang, Andreas Radbruch, Andreas Acs2  +459 moreInstitutions (160)
TL;DR: These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community providing the theory and key practical aspects offlow cytometry enabling immunologists to avoid the common errors that often undermine immunological data.
Abstract: These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer-reviewed by leading experts in the field, making this an essential research companion.

698 citations

Journal ArticleDOI
TL;DR: The results identify JAM-C as a key regulator of polarized neutrophil TEM in vivo and suggest that reverse TEM of neutrophils can contribute to the dissemination of systemic inflammation.
Abstract: The migration of neutrophils into inflamed tissues is a fundamental component of innate immunity. A decisive step in this process is the polarized migration of blood neutrophils through endothelial cells (ECs) lining the venular lumen (transendothelial migration (TEM)) in a luminal-to-abluminal direction. By real-time confocal imaging, we found that neutrophils had disrupted polarized TEM ('hesitant' and 'reverse') in vivo. We noted these events in inflammation after ischemia-reperfusion injury, characterized by lower expression of junctional adhesion molecule C (JAM-C) at EC junctions, and they were enhanced by blockade or genetic deletion of JAM-C in ECs. Our results identify JAM-C as a key regulator of polarized neutrophil TEM in vivo and suggest that reverse TEM of neutrophils can contribute to the dissemination of systemic inflammation.

505 citations

Journal ArticleDOI
TL;DR: Emerging cellular models are now addressing the transition from an adherent mode to a non-adherent state, incorporating mechanisms that support an efficient migratory profile of leukocytes in the interstitial tissue beyond the venular wall.
Abstract: The shuttling of leukocytes between the bloodstream and interstitial tissues involves different locomotion strategies that are governed by locally presented soluble and cell-bound signals. Recent studies have furthered our understanding of the rapidly advancing field of leukocyte migration, particularly regarding cellular and subcellular events at the level of the venular wall. Furthermore, emerging cellular models are now addressing the transition from an adherent mode to a non-adherent state, incorporating mechanisms that support an efficient migratory profile of leukocytes in the interstitial tissue beyond the venular wall.

495 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This Review focuses on new aspects of one of the central paradigms of inflammation and immunity — the leukocyte adhesion cascade.
Abstract: To get to the site of inflammation, leukocytes must first adhere to and traverse the blood-vessel wall, events that occur in a cascade-like manner. But what are the exact steps in this cascade and what molecules are involved?

3,917 citations

Journal ArticleDOI
TL;DR: The key features of the life of a neutrophil are discussed, from its release from bone marrow to its death, and the mechanisms that are used by neutrophils to promote protective or pathological immune responses at different sites are explained.
Abstract: Neutrophils have traditionally been thought of as simple foot soldiers of the innate immune system with a restricted set of pro-inflammatory functions. More recently, it has become apparent that neutrophils are, in fact, complex cells capable of a vast array of specialized functions. Although neutrophils are undoubtedly major effectors of acute inflammation, several lines of evidence indicate that they also contribute to chronic inflammatory conditions and adaptive immune responses. Here, we discuss the key features of the life of a neutrophil, from its release from bone marrow to its death. We discuss the possible existence of different neutrophil subsets and their putative anti-inflammatory roles. We focus on how neutrophils are recruited to infected or injured tissues and describe differences in neutrophil recruitment between different tissues. Finally, we explain the mechanisms that are used by neutrophils to promote protective or pathological immune responses at different sites.

3,898 citations

Journal ArticleDOI
TL;DR: Novel engineering approaches are discussed that capitalize on the growing understanding of tumour biology and nano–bio interactions to develop more effective nanotherapeutics for cancer patients.
Abstract: The intrinsic limits of conventional cancer therapies prompted the development and application of various nanotechnologies for more effective and safer cancer treatment, herein referred to as cancer nanomedicine. Considerable technological success has been achieved in this field, but the main obstacles to nanomedicine becoming a new paradigm in cancer therapy stem from the complexities and heterogeneity of tumour biology, an incomplete understanding of nano-bio interactions and the challenges regarding chemistry, manufacturing and controls required for clinical translation and commercialization. This Review highlights the progress, challenges and opportunities in cancer nanomedicine and discusses novel engineering approaches that capitalize on our growing understanding of tumour biology and nano-bio interactions to develop more effective nanotherapeutics for cancer patients.

3,800 citations