scispace - formally typeset
Search or ask a question
Author

Suvasis Dixit

Other affiliations: Georgia Institute of Technology
Bio: Suvasis Dixit is an academic researcher from California Institute of Technology. The author has contributed to research in topics: Biogenic silica & Sorption. The author has an hindex of 8, co-authored 8 publications receiving 2618 citations. Previous affiliations of Suvasis Dixit include Georgia Institute of Technology.

Papers
More filters
Journal ArticleDOI
TL;DR: The sorption data indicate that, under most of the chemical conditions investigated in this study, reduction of As(V) in the presence of HFO or goethite would have only minor effects on or even decrease its mobility in the environment at near-neutral pH conditions.
Abstract: Arsenic derived from natural sources occurs in groundwater in many countries, affecting the health of millions of people. The combined effects of As(V) reduction and diagenesis of iron oxide minerals on arsenic mobility are investigated in this study by comparing As(V) and As(III) sorption onto amorphous iron oxide (HFO), goethite, and magnetite at varying solution compositions. Experimental data are modeled with a diffuse double layer surface complexation model, and the extracted model parameters are used to examine the consistency of our results with those previously reported. Sorption of As(V) onto HFO and goethite is more favorable than that of As(III) below pH 5−6, whereas, above pH 7−8, As(III) has a higher affinity for the solids. The pH at which As(V) and As(III) are equally sorbed depends on the solid-to-solution ratio and type and specific surface area of the minerals and is shifted to lower pH values in the presence of phosphate, which competes for sorption sites. The sorption data indicate tha...

2,115 citations

Journal ArticleDOI
TL;DR: In this paper, the results of batch and flow-through reactions were combined with data on sediment composition and pore water silicic acid profiles to identify processes controlling the solubility of biogenic silica and the build-up of silica acid in marine sediments.

249 citations

Journal ArticleDOI
TL;DR: In this article, the observed variability in biogenic silica reactivity is consistent with results of experimental dissolution studies and the experimental data further imply that aluminum incorporation in the silica matrix, during biomineralization or after death of the organisms, enhances the preservation efficiency of biogenic opal in marine sediments.
Abstract: [1] On average, 50-60% of diatomaceous opal produced in the euphotic zone redissolves within the upper 100 m of the water column. High specific silica dissolution rates in the surface ocean contrast with order-of-magnitude lower values in deep-sea sediments. The lack of a mechanistic understanding of these large variations in dissolution kinetics is a major source of uncertainty in models of nutrient silicon cycling in the oceans. Here we show that the observed variability in biogenic silica reactivity is consistent with results of experimental dissolution studies. Differences in aluminum content and specific surface area of the diatom skeletons, plus differences in temperature and degree of undersaturation, all contribute to lowering silica dissolution rates in deep-sea sediments relative to the euphotic zone. When variations in these material and environmental properties are accounted for, the predicted specific opal dissolution rate in average surface ocean water is over 2 orders of magnitude faster than the rate measured in recently deposited biosiliceous oozes of the Southern Ocean. The predicted specific dissolution rate, however, is approximately 5 times higher than the value obtained from global estimates of the depth-integrated dissolution rate and biogenic silica concentration in the upper water column. This discrepancy likely reflects the inhibitory effect of protective organic coatings on fresh diatom shells in surface waters. The experimental data further imply that aluminum incorporation in the silica matrix, during biomineralization or after death of the organisms, enhances the preservation efficiency of biogenic opal in marine sediments.

194 citations

Journal ArticleDOI
TL;DR: In this article, the experimental data obtained in single-sorbate experiments were modeled using a diffuse double layer surface complexation model and used to predict and compare sorption in dual-sorborate systems.

121 citations

Journal ArticleDOI
TL;DR: The surface chemistry of cultured diatoms was compared to that of biosiliceous material in Southern Ocean sediments, using potentiometric titrations and aluminum adsorption experiments as mentioned in this paper.

116 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Strong acids and bases seem to be the best desorbing agents to produce arsenic concentrates, and some commercial adsorbents which include resins, gels, silica, treated silica tested for arsenic removal come out to be superior.

3,168 citations

Book
01 Jan 1971
TL;DR: In this paper, Ozaki et al. describe the dynamics of adsorption and Oxidation of organic Molecules on Illuminated Titanium Dioxide Particles Immersed in Water.
Abstract: 1: Magnetic Particles: Preparation, Properties and Applications: M. Ozaki. 2: Maghemite (gamma-Fe2O3): A Versatile Magnetic Colloidal Material C.J. Serna, M.P. Morales. 3: Dynamics of Adsorption and Oxidation of Organic Molecules on Illuminated Titanium Dioxide Particles Immersed in Water M.A. Blesa, R.J. Candal, S.A. Bilmes. 4: Colloidal Aggregation in Two-Dimensions A. Moncho-Jorda, F. Martinez-Lopez, M.A. Cabrerizo-Vilchez, R. Hidalgo Alvarez, M. Quesada-PMerez. 5: Kinetics of Particle and Protein Adsorption Z. Adamczyk.

1,870 citations

Journal ArticleDOI
Imran Ali1

1,531 citations

Journal ArticleDOI
01 Jul 2004-Nature
TL;DR: It is shown that anaerobic metal-reducing bacteria can play a key role in the mobilization of arsenic in sediments collected from a contaminated aquifer in West Bengal and that, for the sediments in this study, arsenic release took place after Fe(iii) reduction, rather than occurring simultaneously.
Abstract: The contamination of ground waters, abstracted for drinking and irrigation, by sediment-derived arsenic threatens the health of tens of millions of people worldwide, most notably in Bangladesh and West Bengal1,2,3. Despite the calamitous effects on human health arising from the extensive use of arsenic-enriched ground waters in these regions, the mechanisms of arsenic release from sediments remain poorly characterized and are topics of intense international debate4,5,6,7,8. We use a microscosm-based approach to investigate these mechanisms: techniques of microbiology and molecular ecology are used in combination with aqueous and solid phase speciation analysis of arsenic. Here we show that anaerobic metal-reducing bacteria can play a key role in the mobilization of arsenic in sediments collected from a contaminated aquifer in West Bengal. We also show that, for the sediments in this study, arsenic release took place after Fe(iii) reduction, rather than occurring simultaneously. Identification of the critical factors controlling the biogeochemical cycling of arsenic is one important contribution to fully informing the development of effective strategies to manage these and other similar arsenic-rich ground waters worldwide.

1,153 citations

Journal ArticleDOI
TL;DR: Nanoscale zero-valent iron (NZVI) was synthesized and tested for the removal of As(III), which is a highly toxic, mobile, and predominant arsenic species in anoxic groundwater and suggests that NZVI is a suitable candidate for both in-situ and ex-Situ groundwater treatment due to its high reactivity.
Abstract: Nanoscale zero-valent iron (NZVI) was synthesized and tested for the removal of As(III), which is a highly toxic, mobile, and predominant arsenic species in anoxic groundwater. We used SEM-EDX, AFM, and XRD to characterize particle size, surface morphology, and corrosion layers formed on pristine NZVI and As(III)-treated NZVI. AFM results showed that particle size ranged from 1 to 120 nm. XRD and SEM results revealed that NZVI gradually converted to magnetite/maghemite corrosion products mixed with lepidocrocite over 60 d. Arsenic(III) adsorption kinetics were rapid and occurred on a scale of minutes following a pseudo-first-order rate expression with observed reaction rate constants (kobs) of 0.07−1.3 min-1 (at varied NZVI concentration). These values are about 1000× higher than kobs literature values for As(III) adsorption on micron size ZVI. Batch experiments were performed to determine the feasibility of NZVI as an adsorbent for As(III) treatment in groundwater as affected by initial As(III) concentra...

1,100 citations