Author
Suveen Kumar
Other affiliations: Delhi Technological University, Ulsan National Institute of Science and Technology
Bio: Suveen Kumar is an academic researcher from University of Delhi. The author has contributed to research in topics: Biosensor & Cyclic voltammetry. The author has an hindex of 14, co-authored 27 publications receiving 951 citations. Previous affiliations of Suveen Kumar include Delhi Technological University & Ulsan National Institute of Science and Technology.
Papers
More filters
TL;DR: The overview of the different materials (glass, silicon, polymer, paper, and techniques for the fabrication of MF based POC devices along with their wide range of biosensor applications is presented.
Abstract: Point-of-care (POC) diagnostic devices have been predicted to provide a boon in health care especially in the diagnosis and detection of diseases. POC devices have been found to have many advantages like a rapid and precise response, portability, low cost, and non-requirement of specialized equipment. The major objective of a POC diagnostic research is to develop a chip-based, self-containing miniaturized device that can be used to examine different analytes in complex samples. Further, the integration of microfluidics (MF) with advanced biosensor technologies is likely to result in improved POC diagnostics. This paper presents the overview of the different materials (glass, silicon, polymer, paper) and techniques for the fabrication of MF based POC devices along with their wide range of biosensor applications. Besides this, the authors have presented in brief the challenges that MF is currently facing along with possible solutions that may result in the availability of the accessible, reliable, and cost-efficient technology. The development of these devices requires the combination of developed MF components into POC devices that are user-friendly, sensitive, stable, accurate, low cost, and minimally invasive. These MF based POC devices have tremendous potential in providing improved healthcare including easy monitoring, early detection of disease, and increased personalization.
181 citations
TL;DR: The structural and morphological investigations of the ZrO2-RGO based biosensing platform have been accomplished using X-ray diffraction, electrochemical, transmission electron microscopy (TEM), atomic force microscope (AFM) and Fourier transform infrared spectroscopy (FT-IR) studies.
Abstract: We report results of the studies relating to fabrication of a non-invasive, label-free and an efficient biosensing platform for detection of the oral cancer biomarker (CYFRA-21-1). One step hydrothermal process was used for uniform decoration of nanostructured zirconia (average particle size 13 nm) on reduced graphene oxide (ZrO2-RGO) to avoid coagulation of the zirconia nanoparticles and to obtain enhanced electrochemical performance of ZrO2-RGO nanocomposite based biosensor. Further, ZrO2-RGO has been functionalized using 3-aminopropyl triethoxy saline (APTES) and electrophoretically deposited on the indium tin oxide coated glass substrate at a low DC potential.The APTES/ZrO2-RGO/ITO electrode exhibits improved heterogeneous electron transfer (more than two times) with respect to that of the APTES/ZrO2/ITO electrode indicating faster electron transfer kinetics. The -NH2 containing APTES/ZrO2-RGO/ITO platform is further biofunctionalized with anti-CYFRA-21-1. The structural and morphological investigations of the ZrO2-RGO based biosensing platform have been accomplished using X-ray diffraction (XRD), electrochemical, transmission electron microscopy (TEM), atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FT-IR) studies. This immunosensor exhibits a wider linear detection range (2-22 ng mL(-1)), excellent sensitivity (0.756 µA mL ng(-1)) and a remarkable lower detection limit of 0.122 ng mL(-1). The observed results have been validated via enzyme linked immunosorbent assay (ELISA).
154 citations
TL;DR: In this paper, a low-cost paper-based electrochemical immunosensor was developed for label-free detection of Staphylococcus aureus, using antibody (Ab)-single walled carbon nanotube (SWCNT) bio-conjugates.
Abstract: The need for low-cost, sensitive, and reliable sensors for the detection of whole bacterial cells in food samples without pre-treatment has been increasing. Outbreaks of foodborne diseases can be severe, especially in developing countries; however, most bio-detection tools are unaffordable. Here, we have developed a rapid and low-cost paper-based electrochemical immunosensor for label-free detection of Staphylococcus aureus, using antibody (Ab)-single walled carbon nanotube (SWCNT) bio-conjugates. Anti-S. aureus antibodies were covalently attached onto the SWCNTs, using the N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride/N-hydroxysuccinimide coupling reagent. These Ab-SWCNT bio-conjugates were then immobilized on the working electrode, and the presence of S. aureus was detected by analyzing the change in peak current following antigen-antibody complex formation. Differential pulse voltammetry was performed with a bacterial concentration ranging from 10 to 107 colony forming units (CFU) mL−1. A selectivity assay using Escherichia coli B, Bacillus subtilis, and S. epidermidis (to examine cross-reactivity) showed that the sensor was specific to S. aureus. Moreover, this immunosensor showed a good linear relationship (R2 = 0.976) between the increase in peak current and logarithmic S. aureus concentration, with a rapid detection time (30 min) and a limit of detection of 13 CFU mL−1 in spiked milk samples. This low-cost immunosensor can be used for rapid detection of pathogens in actual food samples with high sensitivity and specificity.
150 citations
TL;DR: This review focuses on the latest advancements in the fields of microfluidic biosensing technologies, and on the challenges and possible solutions for translation of this technology for POC diagnostic applications.
Abstract: There is a growing demand to integrate biosensors with microfluidics to provide miniaturized platforms with many favorable properties, such as reduced sample volume, decreased processing time, low cost analysis and low reagent consumption. These microfluidics-integrated biosensors would also have numerous advantages such as laminar flow, minimal handling of hazardous materials, multiple sample detection in parallel, portability and versatility in design. Microfluidics involves the science and technology of manipulation of fluids at the micro- to nano-liter level. It is predicted that combining biosensors with microfluidic chips will yield enhanced analytical capability, and widen the possibilities for applications in clinical diagnostics. The recent developments in microfluidics have helped researchers working in industries and educational institutes to adopt some of these platforms for point-of-care (POC) diagnostics. This review focuses on the latest advancements in the fields of microfluidic biosensing technologies, and on the challenges and possible solutions for translation of this technology for POC diagnostic applications. We also discuss the fabrication techniques required for developing microfluidic-integrated biosensors, recently reported biomarkers, and the prospects of POC diagnostics in the medical industry.
149 citations
TL;DR: This low cost, flexible and environment friendly conducting paper based biosensor utilized for cancer biomarker (carcinoembryonic antigen, CEA) detection reveals high sensitivity of 25.8 µA ng(-1) mL cm(-2) in the physiological range, 1-10 ng mL(-1).
Abstract: We report results of the studies relating to the fabrication of a paper based sensor comprising of poly (3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and reduced graphene oxide (RGO) composite. The effect of various solvents like methanol, ethylene glycol and H 2 SO 4 on the electrical conductivity of PEDOT:PSS coated Whatman paper has been investigated. The conductivity of this solution processed conducting paper significantly increases from ~1.16×10 −4 S cm −1 up to ~3.57×10 −2 S cm −1 (~300 times) on treatment with ethylene glycol. The observed significant increase in electrical conductivity is due to conformational rearrangement in the polymer and is due to strong non-covalent cooperative interaction between PEDOT and the cellulose molecules. Further, incorporation of RGO into the conducting paper results in improved electrochemical performance and signal stability. This paper electrode is a promising alternative over the expensive conventional electrodes (ITO, gold and glassy carbon), that are known to have limited application in smart point-of-care (POC) devices. This low cost, flexible and environment friendly conducting paper based biosensor utilized for cancer biomarker (carcinoembryonic antigen, CEA) detection reveals high sensitivity of 25.8 µA ng −1 mL cm −2 in the physiological range, 1–10 ng mL −1 .
130 citations
Cited by
More filters
01 Jan 1994
TL;DR: Micromachining technology was used to prepare chemical analysis systems on glass chips that utilize electroosmotic pumping to drive fluid flow and electrophoretic separation to distinguish sample components with no moving parts.
Abstract: Micromachining technology was used to prepare chemical analysis systems on glass chips (1 centimeter by 2 centimeters or larger) that utilize electroosmotic pumping to drive fluid flow and electrophoretic separation to distinguish sample components. Capillaries 1 to 10 centimeters long etched in the glass (cross section, 10 micrometers by 30 micrometers) allow for capillary electrophoresis-based separations of amino acids with up to 75,000 theoretical plates in about 15 seconds, and separations of about 600 plates can be effected within 4 seconds. Sample treatment steps within a manifold of intersecting capillaries were demonstrated for a simple sample dilution process. Manipulation of the applied voltages controlled the directions of fluid flow within the manifold. The principles demonstrated in this study can be used to develop a miniaturized system for sample handling and separation with no moving parts.
1,412 citations
22 Apr 2012
TL;DR: In this article, the electromagnetic spectrum in Figure 1 illustrates the many different types of electromagnetic radiation, including gamma rays (γ-rays), X-rays, ultraviolet (UV) radiation, visible light, infrared (IR), microwaves, and radio waves.
Abstract: Spectroscopy is the study of matter interacting with electromagnetic radiation (e.g., light). The electromagnetic spectrum in Figure 1 illustrates the many different types of electromagnetic radiation, including gamma rays (γ-rays), X-rays, ultraviolet (UV) radiation, visible light, infrared (IR) radiation, microwaves, and radio waves. The frequency (ν) and wavelength (λ) ranges associated with each form of radiant energy are also indicated in Figure 1.
849 citations
TL;DR: This review is a comprehensive description of the parameters that give rise to the sensing capabilities of CNT-based sensors and the application of C NT-based devices in chemical sensing and their prospects for commercialization.
Abstract: Carbon nanotubes (CNTs) promise to advance a number of real-world technologies. Of these applications, they are particularly attractive for uses in chemical sensors for environmental and health monitoring. However, chemical sensors based on CNTs are often lacking in selectivity, and the elucidation of their sensing mechanisms remains challenging. This review is a comprehensive description of the parameters that give rise to the sensing capabilities of CNT-based sensors and the application of CNT-based devices in chemical sensing. This review begins with the discussion of the sensing mechanisms in CNT-based devices, the chemical methods of CNT functionalization, architectures of sensors, performance parameters, and theoretical models used to describe CNT sensors. It then discusses the expansive applications of CNT-based sensors to multiple areas including environmental monitoring, food and agriculture applications, biological sensors, and national security. The discussion of each analyte focuses on the strategies used to impart selectivity and the molecular interactions between the selector and the analyte. Finally, the review concludes with a brief outlook over future developments in the field of chemical sensors and their prospects for commercialization.
641 citations
TL;DR: With advances in micro-manufacture, sensor technology, and miniaturized electronics, biosensor and bioelectronic devices on smartphone can be used to perform biochemical detections as common and convenient as electronic tag readout in foreseeable future.
Abstract: Smartphone has been widely integrated with sensors, such as test strips, sensor chips, and hand-held detectors, for biochemical detections due to its portability and ubiquitous availability. Utilizing built-in function modules, smartphone is often employed as controller, analyzer, and displayer for rapid, real-time, and point-of-care monitoring, which can significantly simplify design and reduce cost of the detecting systems. This paper presents a review of biosensors and bioelectronics on smartphone for portable biochemical detections. The biosensors and bioelectronics based on smartphone can mainly be classified into biosensors using optics, surface plasmon resonance, electrochemistry, and near-field communication. The developments of these biosensors and bioelectronics on smartphone are reviewed along with typical biochemical detecting cases. Sensor strategies, detector attachments, and coupling methods are highlighted to show designs of the compact, lightweight, and low-cost sensor systems. The performances and advantages of these designs are introduced with their applications in healthcare diagnosis, environment monitoring, and food evaluation. With advances in micro-manufacture, sensor technology, and miniaturized electronics, biosensor and bioelectronic devices on smartphone can be used to perform biochemical detections as common and convenient as electronic tag readout in foreseeable future.
489 citations
TL;DR: Graphene and its oxygenated derivatives, including reduced graphene oxide (rGO), are becoming an important class of nanomaterials in the field of biosensors as discussed by the authors, and the discovery of graphene has spectacularly accelerated research on fabricating low-cost electrode materials because of its unique physical properties, including high specific surface area, high carrier mobility, high electrical conductivity, flexibility.
Abstract: Biosensors with high sensitivity, selectivity and a low limit of detection, reaching nano/picomolar concentrations of biomolecules, are important to the medical sciences and healthcare industry for evaluating physiological and metabolic parameters. Over the last decade, different nanomaterials have been exploited to design highly efficient biosensors for the detection of analyte biomolecules. The discovery of graphene has spectacularly accelerated research on fabricating low-cost electrode materials because of its unique physical properties, including high specific surface area, high carrier mobility, high electrical conductivity, flexibility, and optical transparency. Graphene and its oxygenated derivatives, including graphene oxide (GO) and reduced graphene oxide (rGO), are becoming an important class of nanomaterials in the field of biosensors. The presence of oxygenated functional groups makes GO nanosheets strongly hydrophilic, facilitating chemical functionalization. Graphene, GO and rGO nanosheets can be easily combined with various types of inorganic nanoparticles, including metals, metal oxides, semiconducting nanoparticles, quantum dots, organic polymers and biomolecules, to create a diverse range of graphene-based nanocomposites with enhanced sensitivity for biosensor applications. This review summarizes the advances in two-dimensional (2D) and three-dimensional (3D) graphene-based nanocomposites as emerging electrochemical and fluorescent biosensing platforms for the detection of a wide range of biomolecules with enhanced sensitivity, selectivity and a low limit of detection. The biofunctionalization and nanocomposite formation processes of graphene-based materials and their unique properties, surface functionalization, enzyme immobilization strategies, covalent immobilization, physical adsorption, biointeractions and direct electron transfer (DET) processes are discussed in connection with the design and fabrication of biosensors. The enzymatic and nonenzymatic reactions on graphene-based nanocomposite surfaces for glucose- and cholesterol-related electrochemical biosensors are analyzed. This review covers a very broad range of graphene-based electrochemical and fluorescent biosensors for the detection of glucose, cholesterol, hydrogen peroxide (H2O2), nucleic acids (DNA/RNA), genes, enzymes, cofactors nicotinamide adenine dinucleotide (NADH) and adenosine triphosphate (ATP), dopamine (DA), ascorbic acid (AA), uric acid (UA), cancer biomarkers, pathogenic microorganisms, food toxins, toxic heavy metal ions, mycotoxins, and pesticides. The sensitivity and selectivity of graphene-based electrochemical and fluorescent biosensors are also examined with respect to interfering analytes present in biological systems. Finally, the future outlook for the development of graphene based biosensing technology is outlined.
454 citations