scispace - formally typeset
Search or ask a question
Author

Suya You

Bio: Suya You is an academic researcher from United States Army Research Laboratory. The author has contributed to research in topics: Augmented reality & Feature extraction. The author has an hindex of 32, co-authored 137 publications receiving 4573 citations. Previous affiliations of Suya You include University of Southern California & West Virginia University.


Papers
More filters
Proceedings ArticleDOI
13 Mar 1999
TL;DR: A hybrid approach to AR tracking that integrates inertial and vision-based technologies is presented, exploiting the complementary nature of the two technologies to compensate for the weaknesses in each component.
Abstract: The biggest single obstacle to building effective augmented reality (AR) systems is the lack of accurate wide-area sensors for trackers that report the locations and orientations of objects in an environment. Active (sensor-emitter) tracking technologies require powered-device installation. Limiting their use to prepared areas that are relatively free of natural or man-made interference sources. Vision-based systems can use passive landmarks, but they are more computationally demanding and often exhibit erroneous behavior due to occlusion or numerical instability. Inertial sensors are completely passive, requiring no external devices or targets, however, the drift rates in portable strapdown configurations are too great for practical use. In this paper, we present a hybrid approach to AR tracking that integrates inertial and vision-based technologies. We exploit the complementary nature of the two technologies to compensate for the weaknesses in each component. Analysis and experimental results demonstrate this system's effectiveness.

348 citations

Proceedings ArticleDOI
01 Dec 2016
TL;DR: This paper introduces a 3D point cloud labeling scheme based on 3D Convolutional Neural Network that minimizes the prior knowledge of the labeling problem and does not require a segmentation step or hand-crafted features as most previous approaches did.
Abstract: In this paper, we tackle the labeling problem for 3D point clouds. We introduce a 3D point cloud labeling scheme based on 3D Convolutional Neural Network. Our approach minimizes the prior knowledge of the labeling problem and does not require a segmentation step or hand-crafted features as most previous approaches did. Particularly, we present solutions for large data handling during the training and testing process. Experiments performed on the urban point cloud dataset containing 7 categories of objects show the robustness of our approach.

306 citations

Proceedings ArticleDOI
13 Mar 2001
TL;DR: A novel framework enables accurate augmented reality (AR) registration with integrated inertial gyroscope and vision tracking technologies that combines the low-frequency stability of vision sensors with the high-frequency tracking of Gyroscope sensors, hence achieving stable static and dynamic six-degree-of-freedom pose tracking.
Abstract: A novel framework enables accurate augmented reality (AR) registration with integrated inertial gyroscope and vision tracking technologies. The framework includes a two-channel complementary motion filter that combines the low-frequency stability of vision sensors with the high-frequency tracking of gyroscope sensors, hence achieving stable static and dynamic six-degree-of-freedom pose tracking. Our implementation uses an extended Kalman filter (EKF). Quantitative analysis and experimental results show that the fusion method achieves dramatic improvements in tracking stability and robustness over either sensor alone. We also demonstrate a new fiducial design and detection system in our example AR annotation systems that illustrate the behavior and benefits of the new tracking method.

246 citations

Journal ArticleDOI
TL;DR: A hybrid orientation tracking system combining inertial sensors and computer vision is described, exploiting the complementary nature of these two sensing technologies to compensate for their respective weaknesses.
Abstract: Our work stems from a program focused on developing tracking technologies for wide-area augmented realities in unprepared outdoor environments. Other participants in the Defense Advanced Research Projects Agency (Darpa) funded Geospatial Registration of Information for Dismounted Soldiers (Grids) program included University of North Carolina at Chapel Hill and Raytheon. We describe a hybrid orientation tracking system combining inertial sensors and computer vision. We exploit the complementary nature of these two sensing technologies to compensate for their respective weaknesses. Our multiple-sensor fusion is novel in augmented reality tracking systems, and the results demonstrate its utility.

206 citations

Patent
30 Sep 2003
TL;DR: In this paper, a 3D model of an environment from range sensor information representing a height field for the environment, tracking orientation information of image sensors in the environment with respect to the 3D models in real time, projecting real-time video from the image sensors onto the model based on the tracked orientation information, and visualizing the model with the projected realtime video.
Abstract: Systems and techniques to implement augmented virtual environments. In one implementation, the technique includes: generating a three dimensional (3D) model of an environment from range sensor information representing a height field for the environment, tracking orientation information of image sensors in the environment with respect to the 3D model in real-time, projecting real-time video from the image sensors onto the 3D model based on the tracked orientation information, and visualizing the 3D model with the projected real-time video. Generating the 3D model can involve parametric fitting of geometric primitives to the range sensor information. The technique can also include: identifying in real time a region in motion with respect to a background image in real-time video, the background image being a single distribution background dynamically modeled from a time average of the real-time video, and placing a surface that corresponds to the moving region in the 3D model.

187 citations


Cited by
More filters
Proceedings ArticleDOI
13 Nov 2007
TL;DR: A system specifically designed to track a hand-held camera in a small AR workspace, processed in parallel threads on a dual-core computer, that produces detailed maps with thousands of landmarks which can be tracked at frame-rate with accuracy and robustness rivalling that of state-of-the-art model-based systems.
Abstract: This paper presents a method of estimating camera pose in an unknown scene. While this has previously been attempted by adapting SLAM algorithms developed for robotic exploration, we propose a system specifically designed to track a hand-held camera in a small AR workspace. We propose to split tracking and mapping into two separate tasks, processed in parallel threads on a dual-core computer: one thread deals with the task of robustly tracking erratic hand-held motion, while the other produces a 3D map of point features from previously observed video frames. This allows the use of computationally expensive batch optimisation techniques not usually associated with real-time operation: The result is a system that produces detailed maps with thousands of landmarks which can be tracked at frame-rate, with an accuracy and robustness rivalling that of state-of-the-art model-based systems.

4,091 citations

01 Jan 2004
TL;DR: Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance and describes numerous important application areas such as image based rendering and digital libraries.
Abstract: From the Publisher: The accessible presentation of this book gives both a general view of the entire computer vision enterprise and also offers sufficient detail to be able to build useful applications. Users learn techniques that have proven to be useful by first-hand experience and a wide range of mathematical methods. A CD-ROM with every copy of the text contains source code for programming practice, color images, and illustrative movies. Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance. Topics are discussed in substantial and increasing depth. Application surveys describe numerous important application areas such as image based rendering and digital libraries. Many important algorithms broken down and illustrated in pseudo code. Appropriate for use by engineers as a comprehensive reference to the computer vision enterprise.

3,627 citations

Journal ArticleDOI
TL;DR: This work refers one to the original survey for descriptions of potential applications, summaries of AR system characteristics, and an introduction to the crucial problem of registration, including sources of registration error and error-reduction strategies.
Abstract: In 1997, Azuma published a survey on augmented reality (AR). Our goal is to complement, rather than replace, the original survey by presenting representative examples of the new advances. We refer one to the original survey for descriptions of potential applications (such as medical visualization, maintenance and repair of complex equipment, annotation, and path planning); summaries of AR system characteristics (such as the advantages and disadvantages of optical and video approaches to blending virtual and real, problems in display focus and contrast, and system portability); and an introduction to the crucial problem of registration, including sources of registration error and error-reduction strategies.

3,624 citations

01 Jan 2006

3,012 citations

Proceedings ArticleDOI
21 Jul 2017
TL;DR: The utility of the OctNet representation is demonstrated by analyzing the impact of resolution on several 3D tasks including 3D object classification, orientation estimation and point cloud labeling.
Abstract: We present OctNet, a representation for deep learning with sparse 3D data. In contrast to existing models, our representation enables 3D convolutional networks which are both deep and high resolution. Towards this goal, we exploit the sparsity in the input data to hierarchically partition the space using a set of unbalanced octrees where each leaf node stores a pooled feature representation. This allows to focus memory allocation and computation to the relevant dense regions and enables deeper networks without compromising resolution. We demonstrate the utility of our OctNet representation by analyzing the impact of resolution on several 3D tasks including 3D object classification, orientation estimation and point cloud labeling.

1,280 citations