scispace - formally typeset
Search or ask a question
Author

Suzanne C. Madden

Bio: Suzanne C. Madden is an academic researcher from Paris Diderot University. The author has contributed to research in topics: Galaxy & Star formation. The author has an hindex of 39, co-authored 76 publications receiving 5443 citations. Previous affiliations of Suzanne C. Madden include University of Paris-Sud & University of Paris.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors analyzed the applicability of far-infrared fine-structure lines [Cii] 158μm, [Oi] 63μm and [Oiii] 88μm to reliably trace the star formation rate (SFR) in a sample of low-metallicity dwarf galaxies from the Herschel Dwarf Galaxy Survey and furthermore, extended the analysis to a broad sample of galaxies of various types and metallicities in the literature.
Abstract: Aims. We analyze the applicability of far-infrared fine-structure lines [Cii] 158 μm, [Oi] 63 μm, and [Oiii] 88 μm to reliably trace the star formation rate (SFR) in a sample of low-metallicity dwarf galaxies from the Herschel Dwarf Galaxy Survey and, furthermore, extend the analysis to a broad sample of galaxies of various types and metallicities in the literature. Methods. We study the trends and scatter in the relation between the SFR (as traced by GALEX FUV and MIPS 24 μm) and far-infrared line emission, on spatially resolved and global galaxy scales, in dwarf galaxies. We assemble far-infrared line measurements from the literature and infer whether the far-infrared lines can probe the SFR (as traced by the total infrared luminosity) in a variety of galaxy populations. Results. In metal-poor dwarfs, the [Oi]_(63) and [Oiii]_(88) lines show the strongest correlation with the SFR with an uncertainty on the SFR estimates better than a factor of 2, while the link between [Cii] emission and the SFR is more dispersed (uncertainty factor of 2.6). The increased scatter in the SFR–L_([CII]) relation toward low metal abundances, warm dust temperatures, and large filling factors of diffuse, highly ionized gas suggests that other cooling lines start to dominate depending on the density and ionization state of the gas. For the literature sample, we evaluate the correlations for a number of different galaxy populations. The [Cii] and [Oi]_(63) lines are considered to be reliable SFR tracers in starburst galaxies, recovering the star formation activity within an uncertainty of factor 2. For sources with composite and active galactic nucleus (AGN) classifications, all three FIR lines can recover the SFR with an uncertainty factor of 2.3. The SFR calibrations for ultra-luminous infrared galaxies (ULIRGs) are similar to starbursts/AGNs in terms of scatter but offset from the starburst/AGN SFR relations because of line deficits relative to their total infrared luminosity. While the number of detections of the FIR fine-structure lines is still very limited at high redshift for [Oi]_(63) and [Oiii]_(88), we provide an SFR calibration for [Cii].

380 citations

Journal ArticleDOI
TL;DR: In this paper, the Herschel Spectral and Photometric Imaging Receiver Fourier Transform Spectrometer (Herschel SPIRE-FTS) observations of Arp 220, a nearby ultra-luminous infrared galaxy, were presented.
Abstract: We present Herschel Spectral and Photometric Imaging Receiver Fourier Transform Spectrometer (Herschel SPIRE-FTS) observations of Arp 220, a nearby ultra-luminous infrared galaxy. The FTS provides continuous spectral coverage from 190 to 670 {mu}m, a wavelength region that is either very difficult to observe or completely inaccessible from the ground. The spectrum provides a good measurement of the continuum and detection of several molecular and atomic species. We detect luminous CO (J = 4-3 to 13-12) and water rotational transitions with comparable total luminosity {approx}2 Multiplication-Sign 10{sup 8} L{sub Sun }; very high-J transitions of HCN (J = 12-11 to 17-16) in absorption; strong absorption features of rare species such as OH{sup +}, H{sub 2}O{sup +}, and HF; and atomic lines of [C I] and [N II]. The modeling of the continuum shows that the dust is warm, with T = 66 K, and has an unusually large optical depth, with {tau}{sub dust} {approx} 5 at 100 {mu}m. The total far-infrared luminosity of Arp 220 is L{sub FIR} {approx} 2 Multiplication-Sign 10{sup 12} L{sub Sun }. Non-LTE modeling of the extinction corrected CO rotational transitions shows that the spectral line energy distribution of CO is fit well by two temperature components:more » cold molecular gas at T {approx} 50 K and warm molecular gas at T {approx} 1350{sup +280}{sub -100} K (the inferred temperatures are much lower if CO line fluxes are not corrected for dust extinction). These two components are not in pressure equilibrium. The mass of the warm gas is 10% of the cold gas, but it dominates the CO luminosity. The ratio of total CO luminosity to the total FIR luminosity is L{sub CO}/L{sub FIR} {approx} 10{sup -4} (the most luminous lines, such as J = 6-5, have L{sub CO,J=6-5}/L{sub FIR} {approx} 10{sup -5}). The temperature of the warm gas is in excellent agreement with the observations of H{sub 2} rotational lines. At 1350 K, H{sub 2} dominates the cooling ({approx}20 L{sub Sun} M{sup -1}{sub Sun }) in the interstellar medium compared to CO ({approx}0.4 L{sub Sun} M{sup -1}{sub Sun }). We have ruled out photodissociation regions, X-ray-dominated regions, and cosmic rays as likely sources of excitation of this warm molecular gas, and found that only a non-ionizing source can heat this gas; the mechanical energy from supernovae and stellar winds is able to satisfy the large energy budget of {approx}20 L{sub Sun} M{sup -1}{sub Sun }. Analysis of the very high-J lines of HCN strongly indicates that they are solely populated by infrared pumping of photons at 14 {mu}m. This mechanism requires an intense radiation field with T > 350 K. We detect a massive molecular outflow in Arp 220 from the analysis of strong P Cygni line profiles observed in OH{sup +}, H{sub 2}O{sup +}, and H{sub 2}O. The outflow has a mass {approx}> 10{sup 7} M{sub Sun} and is bound to the nuclei with velocity {approx}< 250 km s{sup -1}. The large column densities observed for these molecular ions strongly favor the existence of an X-ray luminous AGN (10{sup 44} erg s{sup -1}) in Arp 220.« less

335 citations

Journal ArticleDOI
TL;DR: The Herschel Reference Survey (HRS) as discussed by the authors is a key project of the Herschel guaranteed time key project and will be a benchmark study of dust in the nearby universe.
Abstract: The Herschel Reference Survey is a Herschel guaranteed time key project and will be a benchmark study of dust in the nearby universe. The survey will complement a number of other Herschel key projects including large cosmological surveys that trace dust in the distant universe. We will use Herschel to produce images of a statistically-complete sample of 323 galaxies at 250, 350, and 500 μm. The sample is volume-limited, containing sources with distances between 15 and 25 Mpc and flux limits in the K band to minimize the selection effects associated with dust and with young high-mass stars and to introduce a selection in stellar mass. The sample spans the whole range of morphological types (ellipticals to late-type spirals) and environments (from the field to the center of the Virgo Cluster) and as such will be useful for other purposes than our own. We plan to use the survey to investigate (i) the dust content of galaxies as a function of Hubble type, stellar mass, and environment; (ii) the connection between the dust content and composition and the other phases of the interstellar medium; and (iii) the origin and evolution of dust in galaxies. In this article, we describe the goals of the survey, the details of the sample and some of the auxiliary observing programs that we have started to collect complementary data. We also use the available multifrequency data to carry out an analysis of the statistical properties of the sample.

279 citations

Journal ArticleDOI
TL;DR: The Herschel Reference Survey (HRS) as mentioned in this paper is a guaranteed time Herschel key project and will be a benchmark study of dust in the nearby universe and will complement a number of other HRS key projects including large cosmological surveys.
Abstract: The Herschel Reference Survey is a guaranteed time Herschel key project and will be a benchmark study of dust in the nearby universe. The survey will complement a number of other Herschel key projects including large cosmological surveys that trace dust in the distant universe. We will use Herschel to produce images of a statistically-complete sample of 323 galaxies at 250, 350 and 500 micron. The sample is volume-limited, containing sources with distances between 15 and 25 Mpc and flux limits in the K-band to minimize the selection effects associated with dust and with young high-mass stars and to introduce a selection in stellar mass. The sample spans the whole range of morphological types (ellipticals to late-type spirals) and environments (from the field to the centre of the Virgo Cluster) and as such will be useful for other purposes than our own. We plan to use the survey to investigate (i) the dust content of galaxies as a function of Hubble type, stellar mass and environment, (ii) the connection between the dust content and composition and the other phases of the interstellar medium and (iii) the origin and evolution of dust in galaxies. In this paper, we describe the goals of the survey, the details of the sample and some of the auxiliary observing programs that we have started to collect complementary data. We also use the available multi-frequency data to carry out an analysis of the statistical properties of the sample.

276 citations

Journal ArticleDOI
TL;DR: In this article, the authors compare atomic gas, molecular gas, and the recent star formation rate (SFR) inferred from H{alpha} in the Small Magellanic Cloud (SMC) by using infrared dust emission and local dust-to-gas ratios.
Abstract: We compare atomic gas, molecular gas, and the recent star formation rate (SFR) inferred from H{alpha} in the Small Magellanic Cloud (SMC). By using infrared dust emission and local dust-to-gas ratios, we construct a map of molecular gas that is independent of CO emission. This allows us to disentangle conversion factor effects from the impact of metallicity on the formation and star formation efficiency of molecular gas. On scales of 200 pc to 1 kpc (where the distributions of H{sub 2} and star formation match well) we find a characteristic molecular gas depletion time of {tau}{sup mol} d{sub ep} {approx} 1.6 Gyr, similar to that observed in the molecule-rich parts of large spiral galaxies on similar spatial scales. This depletion time shortens on much larger scales to {approx}0.6 Gyr because of the presence of a diffuse H{alpha} component, and lengthens on much smaller scales to {approx}7.5 Gyr because the H{alpha} and H{sub 2} distributions differ in detail. We estimate the systematic uncertainties in our dust-based {tau}{sup mol}{sub dep} measurement to be a factor of {approx}2-3. We suggest that the impact of metallicity on the physics of star formation in molecular gas has at most this magnitude, rather than the factormore » of {approx}40 suggested by the ratio of SFR to CO emission. The relation between SFR and neutral (H{sub 2} + H{sub i}) gas surface density is steep, with a power-law index {approx}2.2 {+-} 0.1, similar to that observed in the outer disks of large spiral galaxies. At a fixed total gas surface density the SMC has a 5-10 times lower molecular gas fraction (and star formation rate) than large spiral galaxies. We explore the ability of the recent models by Krumholz et al. and Ostriker et al. to reproduce our observations. We find that to explain our data at all spatial scales requires a low fraction of cold, gravitationally bound gas in the SMC. We explore a combined model that incorporates both large-scale thermal and dynamical equilibrium and cloud-scale photodissociation region structure and find that it reproduces our data well, as well as predicting a fraction of cold atomic gas very similar to that observed in the SMC.« less

251 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies.
Abstract: We review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies. Methods of measuring gas contents and star-formation rates are discussed, and updated prescriptions for calculating star-formation rates are provided. We review relations between star formation and gas on scales ranging from entire galaxies to individual molecular clouds.

2,525 citations

Journal ArticleDOI
TL;DR: In this paper, the authors calculated IR emission spectra for dust heated by starlight, for mixtures of amorphous silicate and graphitic grains, including varying amounts of PAH particles.
Abstract: IR emission spectra are calculated for dust heated by starlight, for mixtures of amorphous silicate and graphitic grains, including varying amounts of PAH particles. The models are constrained to reproduce the average Milky Way extinction curve. The calculations include the effects of single-photon heating. Updated IR absorption properties for the PAHs are presented that are consistent with observed emission spectra, including those newly obtained by Spitzer. We find a size distribution for the PAHs giving emission band ratios consistent with the observed spectra of the Milky Way and other galaxies. Emission spectra are presented for a wide range of starlight intensities. We calculate how the efficiency of emission into different IR bands depends on PAH size; the strong 7.7 μm emission feature is produced mainly by PAH particles containing Umin. We present graphical procedures using Spitzer IRAC and MIPS photometry to estimate the parameters qPAH, Umin, and γ, the fraction fPDR of the dust luminosity coming from photodissociation regions with U > 100, and the total dust mass Mdust.

2,102 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the theoretical underpinning, techniques, and results of efforts to estimate the CO-to-H2 conversion factor in different environments, and recommend a conversion factor XCO = 2×10 20 cm −2 (K km s −1 ) −1 with ±30% uncertainty.
Abstract: CO line emission represents the most accessible and widely used tracer of the molecular interstellar medium. This renders the translation of observed CO intensity into total H2 gas mass critical to understand star formation and the interstellar medium in our Galaxy and beyond. We review the theoretical underpinning, techniques, and results of efforts to estimate this CO-to-H2 “conversion factor,” XCO, in different environments. In the Milky Way disk, we recommend a conversion factor XCO = 2×10 20 cm −2 (K km s −1 ) −1 with ±30% uncertainty. Studies of other “normal galaxies” return similar values in Milky Way-like disks, but with greater scatter and systematic uncertainty. Departures from this Galactic conversion factor are both observed and expected. Dust-based determinations, theoretical arguments, and scaling relations all suggest that XCO increases with decreasing metallicity, turning up sharply below metallicity ≈ 1/3–1/2 solar in a manner consistent with model predictions that identify shielding as a key parameter. Based on spectral line modeling and dust observations, XCO appears to drop in the central, bright regions of some but not all galaxies, often coincident with regions of bright CO emission and high stellar surface density. This lower XCO is also present in the overwhelmingly molecular interstellar medium of starburst galaxies, where several lines of evidence point to a lower CO-to-H2 conversion factor. At high redshift, direct evidence regarding the conversion factor remains scarce; we review what is known based on dynamical modeling and other arguments. Subject headings: ISM: general — ISM: molecules — galaxies: ISM — radio lines: ISM

2,004 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined the infrared (IR) 3-500μm spectral energy distributions (SEDs) of galaxies at 0 < z < 2.5, supplemented by a local reference sample from IRAS, ISO, Spitzer, and AKARI data.
Abstract: We present the deepest 100 to 500 μm far-infrared observations obtained with the Herschel Space Observatory as part of the GOODS-Herschel key program, and examine the infrared (IR) 3–500 μm spectral energy distributions (SEDs) of galaxies at 0 < z < 2.5, supplemented by a local reference sample from IRAS, ISO, Spitzer, and AKARI data. We determine the projected star formation densities of local galaxies from their radio and mid-IR continuum sizes. We find that the ratio of total IR luminosity to rest-frame 8 μm luminosity, IR8 (≡ L_(IR)^(tot)/L_8), follows a Gaussian distribution centered on IR8 = 4 (σ = 1.6) and defines an IR main sequence for star-forming galaxies independent of redshift and luminosity. Outliers from this main sequence produce a tail skewed toward higher values of IR8. This minority population ( 3 × 10^(10) L_⊙ kpc^(-2)) and a high specific star formation rate (i.e., starbursts). The rest-frame, UV-2700 A size of these distant starbursts is typically half that of main sequence galaxies, supporting the correlation between star formation density and starburst activity that is measured for the local sample. Locally, luminous and ultraluminous IR galaxies, (U)LIRGs (L_(IR)^(tot)≥ 10^(11) L_☉), are systematically in the starburst mode, whereas most distant (U)LIRGs form stars in the “normal” main sequence mode. This confusion between two modes of star formation is the cause of the so-called “mid-IR excess” population of galaxies found at z > 1.5 by previous studies. Main sequence galaxies have strong polycyclic aromatic hydrocarbon (PAH) emission line features, a broad far-IR bump resulting from a combination of dust temperatures (T_(dust) ~ 15–50 K), and an effective T_(dust) ~ 31 K, as derived from the peak wavelength of their infrared SED. Galaxies in the starburst regime instead exhibit weak PAH equivalent widths and a sharper far-IR bump with an effective T_(dust)~ 40 K. Finally, we present evidence that the mid-to-far IR emission of X-ray active galactic nuclei (AGN) is predominantly produced by star formation and that candidate dusty AGNs with a power-law emission in the mid-IR systematically occur in compact, dusty starbursts. After correcting for the effect of starbursts on IR8, we identify new candidates for extremely obscured AGNs.

1,235 citations