scispace - formally typeset
Search or ask a question
Author

Suzanne E. Mohney

Bio: Suzanne E. Mohney is an academic researcher from Pennsylvania State University. The author has contributed to research in topics: Ohmic contact & Contact resistance. The author has an hindex of 38, co-authored 226 publications receiving 5375 citations. Previous affiliations of Suzanne E. Mohney include Foundation University, Islamabad & University of Wisconsin-Madison.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors showed that the mechanism for Ohmic contact formation in Ti/Al contacts annealed in the 400-600°C range includes Ti reducing the GaN native oxide and an Al-Ti intermetallic coming into intimate contact with GaN.
Abstract: We report on a study of Al and Ti/Al contacts to n-type GaN. Al contacts on n-GaN (7×1017 cm−3) annealed in forming gas at 600 °C reached a minimum contact resistivity of 8×10−6 Ω cm2 and had much better thermal stability than reported by previous researchers. Ti/Al (35/115 nm) contacts on n-GaN (5×1017 cm−3) had resistivities of 7×10−6 and 5×10−6 Ω cm2 after annealing in Ar at 400 °C for 5 min and 600 °C for 15 s, respectively. Depth profiles of Ti/Al contacts annealed at 400 °C showed that low contact resistance was only achieved after Al diffused to the GaN interface. We propose that the mechanism for Ohmic contact formation in Ti/Al contacts annealed in the 400–600 °C range includes Ti reducing the GaN native oxide and an Al–Ti intermetallic coming into intimate contact with the GaN.

250 citations

Journal ArticleDOI
TL;DR: In this paper, the X-ray photo-electron spectroscopy (XPS) revealed minimal oxide growth at 450 and 750 °C for up to 25 h. This oxide was determined to be the monoclinic β-Ga2O3 using glancing angle x-ray diffraction.
Abstract: The oxidation of single crystal gallium nitride in dry air has been investigated. X-ray photoelectron spectroscopy (XPS) revealed minimal oxide growth at 450 and 750 °C for up to 25 h. However, at 900 °C the growth of an oxide approximately 5000 A thick was observed after 25 h. This oxide was determined to be the monoclinic β-Ga2O3 using glancing angle x-ray diffraction. XPS spectra of the Ga 3d and Ga 2p core levels indicated peak shifts of 1.2 and 1.3 eV, respectively, from Ga–O to Ga–N bonding. The Ga L3M45M45 core level binding energy was also investigated and β-Ga2O3 and GaN each presented a characteristic peak shape.

228 citations

Journal ArticleDOI
TL;DR: The use of these films in micromechanical devices has been restricted because hydrogen fluoride-etched structures are covered by an etch residue that leads to contact welding.

194 citations

Journal ArticleDOI
TL;DR: In this article, a multilayer solution-processed blue light-emitting diode based on colloidal core/shell CdS/ZnS nanocrystal quantum dots (QDs) is presented.
Abstract: We report a multilayer solution-processed blue light-emitting diode based on colloidal core/shell CdS/ZnS nanocrystal quantum dots (QDs). At a low-operating voltage of 5.5 V, the device emits spectrally pure blue radiation at 460 nm with a narrow full-width-at-half-maximum bandwidth of 20 nm and high brightness up to 1600 cd/m2. Broad-band, long-wavelength emission from the polymer components and deep traps in the QDs are minimized to less than 5% of the total emission.

193 citations

Journal ArticleDOI
TL;DR: In this article, the characteristics of Pt Schottky diodes on n-type GaN in hydrogen and propane are reported for the first time, and they are able to detect hydrogen from 200-400°C.
Abstract: The characteristics of Pt Schottky diodes on n-type GaN in hydrogen and propane are reported for the first time. This response from 200–400°C has been characterized by current–voltage measurements, revealing that the diodes are able to detect hydrogen from 200–400°C and propane from 300–400°C. The high temperature stability of Pt diodes on GaN has been investigated by long term annealing at 400°C in Ar or 20% O2 in Ar. The diodes have been held at 400°C for 500 h without degradation of their electrical characteristics or response to hydrogen-containing gases.

191 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The demonstration of these novel quantum-dot light-emitting diodes based on all-inorganic perovskite CsPbX3 (X = Cl, Br, I) nanocrystals opens a new avenue toward designing optoelectronic devices, such as displays, photodetectors, solar cells, and lasers.
Abstract: Novel quantum-dot light-emitting diodes based on all-inorganic perovskite CsPbX3 (X = Cl, Br, I) nanocrystals are reported. The well-dispersed, single-crystal quantum dots (QDs) exhibit high quantum yields, and tunable light emission wavelength. The demonstration of these novel perovskite QDs opens a new avenue toward designing optoelectronic devices, such as displays, photodetectors, solar cells, and lasers.

2,311 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarized the key advantages of using quantum dots as luminophores in light-emitting devices (LEDs) and outlined the operating mechanisms of four types of QD-LEDs.
Abstract: This Review article summarizes the key advantages of using quantum dots (QDs) as luminophores in light-emitting devices (LEDs) and outlines the operating mechanisms of four types of QD-LED. The key scientific and technological challenges facing QD-LED commercialization are identified, together with on-going strategies to overcome these challenges.

2,086 citations

Journal ArticleDOI
TL;DR: The role of extended and point defects, and key impurities such as C, O, and H, on the electrical and optical properties of GaN is reviewed in this article, along with the influence of process-induced or grown-in defects and impurities on the device physics.
Abstract: The role of extended and point defects, and key impurities such as C, O, and H, on the electrical and optical properties of GaN is reviewed. Recent progress in the development of high reliability contacts, thermal processing, dry and wet etching techniques, implantation doping and isolation, and gate insulator technology is detailed. Finally, the performance of GaN-based electronic and photonic devices such as field effect transistors, UV detectors, laser diodes, and light-emitting diodes is covered, along with the influence of process-induced or grown-in defects and impurities on the device physics.

1,693 citations

Journal ArticleDOI
TL;DR: The role of defects and impurities on the transport and optical properties of bulk, epitaxial, and nanostructures material, the difficulty in p-type doping, and the development of processing techniques like etching, contact formation, dielectrics for gate formation, and passivation are discussed in this article.
Abstract: Gallium oxide (Ga2O3) is emerging as a viable candidate for certain classes of power electronics, solar blind UV photodetectors, solar cells, and sensors with capabilities beyond existing technologies due to its large bandgap. It is usually reported that there are five different polymorphs of Ga2O3, namely, the monoclinic (β-Ga2O3), rhombohedral (α), defective spinel (γ), cubic (δ), or orthorhombic (e) structures. Of these, the β-polymorph is the stable form under normal conditions and has been the most widely studied and utilized. Since melt growth techniques can be used to grow bulk crystals of β-GaO3, the cost of producing larger area, uniform substrates is potentially lower compared to the vapor growth techniques used to manufacture bulk crystals of GaN and SiC. The performance of technologically important high voltage rectifiers and enhancement-mode Metal-Oxide Field Effect Transistors benefit from the larger critical electric field of β-Ga2O3 relative to either SiC or GaN. However, the absence of clear demonstrations of p-type doping in Ga2O3, which may be a fundamental issue resulting from the band structure, makes it very difficult to simultaneously achieve low turn-on voltages and ultra-high breakdown. The purpose of this review is to summarize recent advances in the growth, processing, and device performance of the most widely studied polymorph, β-Ga2O3. The role of defects and impurities on the transport and optical properties of bulk, epitaxial, and nanostructures material, the difficulty in p-type doping, and the development of processing techniques like etching, contact formation, dielectrics for gate formation, and passivation are discussed. Areas where continued development is needed to fully exploit the properties of Ga2O3 are identified.

1,535 citations

Journal ArticleDOI
TL;DR: In this paper, the photocatalyst sheet design enables efficient and scalable water splitting using particulate semiconductors, which is a potentially scalable and economically feasible technology for converting solar energy into hydrogen.
Abstract: Photocatalytic water splitting using semiconductors is attractive for converting solar energy into hydrogen. An efficient and scalable system based on particulate photocatalyst sheets is now shown to exhibit energy conversion efficiency exceeding 1%. Photocatalytic water splitting using particulate semiconductors is a potentially scalable and economically feasible technology for converting solar energy into hydrogen1,2,3. Z-scheme systems based on two-step photoexcitation of a hydrogen evolution photocatalyst (HEP) and an oxygen evolution photocatalyst (OEP) are suited to harvesting of sunlight because semiconductors with either water reduction or oxidation activity can be applied to the water splitting reaction4,5. However, it is challenging to achieve efficient transfer of electrons between HEP and OEP particles6,7. Here, we present photocatalyst sheets based on La- and Rh-codoped SrTiO3 (SrTiO3:La, Rh; ref. 8) and Mo-doped BiVO4 (BiVO4:Mo) powders embedded into a gold (Au) layer. Enhancement of the electron relay by annealing and suppression of undesirable reactions through surface modification allow pure water (pH 6.8) splitting with a solar-to-hydrogen energy conversion efficiency of 1.1% and an apparent quantum yield of over 30% at 419 nm. The photocatalyst sheet design enables efficient and scalable water splitting using particulate semiconductors.

1,190 citations