scispace - formally typeset
Search or ask a question
Author

Suzanne E. Mohney

Bio: Suzanne E. Mohney is an academic researcher from Pennsylvania State University. The author has contributed to research in topics: Ohmic contact & Contact resistance. The author has an hindex of 38, co-authored 226 publications receiving 5375 citations. Previous affiliations of Suzanne E. Mohney include Foundation University, Islamabad & University of Wisconsin-Madison.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, structural and chemical analysis using grazing incidence X-ray diffraction, transmission electron microscopy, and Xray energy dispersive spectrometry indicated that an interfacial reaction did not occur between the Ni film and the In-polar (0001) InN layer.
Abstract: Ni films on (0001) and (0001¯) InN exhibited different reaction kinetics upon annealing at 673K. Structural and chemical analysis using grazing incidence X-ray diffraction, transmission electron microscopy, and X-ray energy dispersive spectrometry indicated that an interfacial reaction did not occur between the Ni film and the In-polar (0001) InN layer. However, the N-polar face reacted with Ni to form the Ni3InNx ternary phase with an anti-perovskite structure. The difference in reactivity for Ni on In-face and N-face InN indicates that polarity alters the reaction and may also affect interactions between other metals and group III-nitride semiconductors.
Proceedings ArticleDOI
25 Sep 2000
TL;DR: In this paper, a Ni-Ti shape memory alloy (SMA) coil was developed in order to increase the high temperature normal force of tin-coated terminals while maintaining moderate room temperature insertion forces.
Abstract: In an effort to reduce costs associated with automotive electrical connectors, auto manufacturers have looked to tin-coated terminals as an effective alternative to more expensive gold-coated terminals. Tin, however, is highly subject to a wear phenomenon known as fretting corrosion, which increases the contact resistance and renders the terminals useless. One solution to minimize fretting corrosion is to increase the terminal normal force. In ordinary electrical terminals, an increased normal force leads to other problems, such as high insertion and removal forces. This work is a continuation of previous research in which a Ni-Ti shape memory alloy (SMA) coil was developed in order to increase the high temperature normal force of tin-coated terminals while maintaining moderate room temperature insertion forces. In particular, this work addresses the cyclic stability of the SMA coil when subjected to repeated temperature cycles over extended periods, the maximization of normal force provided by the coil for the amount of SMA used, and the long-term high-temperature performance of the SMA. This research has resulted in the reduction of the SMA wire diameter by nearly 30%, an increase in high temperature removal force of the terminal from approximately 20 N without the SMA to 60 N with it, and an associated reduction in cost by nearly 50% over the previous design. To accomplish these improvements, the SMA composition was changed from 55.1 wt% Ni to 49.7 wt% Ni, and the optimum training temperature for the new composition was found to be 400/spl deg/C.
Journal ArticleDOI
TL;DR: In this article, the deformation resistance of metal thin film surfaces was investigated using nanoindentation of ultra-thin (≤20nm) Ru and Pt coatings on thin Au films.
Abstract: This study reveals that ultra-thin, single-layer metal coatings can be used to tailor the deformation resistance of metal thin film surfaces, even when the penetration depths of the indents extend well beyond the coating layer. Nanoindentation of ultra-thin (≤20 nm) Ru and Pt coatings on thick Au films (350 nm) was used to illustrate how ultra-thin layers affect both the elastic and plastic deformation behavior. In spite of their (generally) higher hardness compared to Au, the Ru and Pt coating systems reduced the deformation resistance of the underlying Au, even though the maximum depth was on the order of the coating thickness. The effects of coating thickness, mechanical properties, and residual stress on the transitions between membrane- and substrate-dominated behavior were established by controlling the deposition conditions of the layers. The results show that the transition from ultra-thin coating- to underlying film-dominated response occurs when the indent penetration depth to coating thickness ratio is less than ∼0.5.
Journal ArticleDOI
TL;DR: In this paper , the authors proposed a hybrid poly-Si with a CoPt coating for local routing in standard cells for compactness, which achieved a 3-fold reduction in delay and a 15.6% reduction in cell area with the proposed hybrid interconnect.
Abstract: The size of transistors has drastically reduced over the years. Interconnects have likewise also been scaled down. Today, conventional copper (Cu)-based interconnects face a significant impediment to further scaling since their electrical conductivity decreases at smaller dimensions, which also worsens the signal delay and energy consumption. As a result, alternative scalable materials such as semi-metals and 2D materials were being investigated as potential Cu replacements. In this paper, we experimentally showed that CoPt can provide better resistivity than Cu at thin dimensions and proposed hybrid poly-Si with a CoPt coating for local routing in standard cells for compactness. We evaluated the performance gain for DRAM/eDRAM, and area vs. performance trade-off for D-Flip-Flop (DFF) using hybrid poly-Si with a thin film of CoPt. We gained up to a 3-fold reduction in delay and a 15.6% reduction in cell area with the proposed hybrid interconnect. We also studied the system-level interconnect design using NbAs, a topological semi-metal with high electron mobility at the nanoscale, and demonstrated its advantages over Cu in terms of resistivity, propagation delay, and slew rate. Our simulations revealed that NbAs could reduce the propagation delay by up to 35.88%. We further evaluated the potential system-level performance gain for NbAs-based interconnects in cache memories and observed an instructions per cycle (IPC) improvement of up to 23.8%.

Cited by
More filters
Journal ArticleDOI
TL;DR: The demonstration of these novel quantum-dot light-emitting diodes based on all-inorganic perovskite CsPbX3 (X = Cl, Br, I) nanocrystals opens a new avenue toward designing optoelectronic devices, such as displays, photodetectors, solar cells, and lasers.
Abstract: Novel quantum-dot light-emitting diodes based on all-inorganic perovskite CsPbX3 (X = Cl, Br, I) nanocrystals are reported. The well-dispersed, single-crystal quantum dots (QDs) exhibit high quantum yields, and tunable light emission wavelength. The demonstration of these novel perovskite QDs opens a new avenue toward designing optoelectronic devices, such as displays, photodetectors, solar cells, and lasers.

2,311 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarized the key advantages of using quantum dots as luminophores in light-emitting devices (LEDs) and outlined the operating mechanisms of four types of QD-LEDs.
Abstract: This Review article summarizes the key advantages of using quantum dots (QDs) as luminophores in light-emitting devices (LEDs) and outlines the operating mechanisms of four types of QD-LED. The key scientific and technological challenges facing QD-LED commercialization are identified, together with on-going strategies to overcome these challenges.

2,086 citations

Journal ArticleDOI
TL;DR: The role of extended and point defects, and key impurities such as C, O, and H, on the electrical and optical properties of GaN is reviewed in this article, along with the influence of process-induced or grown-in defects and impurities on the device physics.
Abstract: The role of extended and point defects, and key impurities such as C, O, and H, on the electrical and optical properties of GaN is reviewed. Recent progress in the development of high reliability contacts, thermal processing, dry and wet etching techniques, implantation doping and isolation, and gate insulator technology is detailed. Finally, the performance of GaN-based electronic and photonic devices such as field effect transistors, UV detectors, laser diodes, and light-emitting diodes is covered, along with the influence of process-induced or grown-in defects and impurities on the device physics.

1,693 citations

Journal ArticleDOI
TL;DR: The role of defects and impurities on the transport and optical properties of bulk, epitaxial, and nanostructures material, the difficulty in p-type doping, and the development of processing techniques like etching, contact formation, dielectrics for gate formation, and passivation are discussed in this article.
Abstract: Gallium oxide (Ga2O3) is emerging as a viable candidate for certain classes of power electronics, solar blind UV photodetectors, solar cells, and sensors with capabilities beyond existing technologies due to its large bandgap. It is usually reported that there are five different polymorphs of Ga2O3, namely, the monoclinic (β-Ga2O3), rhombohedral (α), defective spinel (γ), cubic (δ), or orthorhombic (e) structures. Of these, the β-polymorph is the stable form under normal conditions and has been the most widely studied and utilized. Since melt growth techniques can be used to grow bulk crystals of β-GaO3, the cost of producing larger area, uniform substrates is potentially lower compared to the vapor growth techniques used to manufacture bulk crystals of GaN and SiC. The performance of technologically important high voltage rectifiers and enhancement-mode Metal-Oxide Field Effect Transistors benefit from the larger critical electric field of β-Ga2O3 relative to either SiC or GaN. However, the absence of clear demonstrations of p-type doping in Ga2O3, which may be a fundamental issue resulting from the band structure, makes it very difficult to simultaneously achieve low turn-on voltages and ultra-high breakdown. The purpose of this review is to summarize recent advances in the growth, processing, and device performance of the most widely studied polymorph, β-Ga2O3. The role of defects and impurities on the transport and optical properties of bulk, epitaxial, and nanostructures material, the difficulty in p-type doping, and the development of processing techniques like etching, contact formation, dielectrics for gate formation, and passivation are discussed. Areas where continued development is needed to fully exploit the properties of Ga2O3 are identified.

1,535 citations

Journal ArticleDOI
TL;DR: In this paper, the photocatalyst sheet design enables efficient and scalable water splitting using particulate semiconductors, which is a potentially scalable and economically feasible technology for converting solar energy into hydrogen.
Abstract: Photocatalytic water splitting using semiconductors is attractive for converting solar energy into hydrogen. An efficient and scalable system based on particulate photocatalyst sheets is now shown to exhibit energy conversion efficiency exceeding 1%. Photocatalytic water splitting using particulate semiconductors is a potentially scalable and economically feasible technology for converting solar energy into hydrogen1,2,3. Z-scheme systems based on two-step photoexcitation of a hydrogen evolution photocatalyst (HEP) and an oxygen evolution photocatalyst (OEP) are suited to harvesting of sunlight because semiconductors with either water reduction or oxidation activity can be applied to the water splitting reaction4,5. However, it is challenging to achieve efficient transfer of electrons between HEP and OEP particles6,7. Here, we present photocatalyst sheets based on La- and Rh-codoped SrTiO3 (SrTiO3:La, Rh; ref. 8) and Mo-doped BiVO4 (BiVO4:Mo) powders embedded into a gold (Au) layer. Enhancement of the electron relay by annealing and suppression of undesirable reactions through surface modification allow pure water (pH 6.8) splitting with a solar-to-hydrogen energy conversion efficiency of 1.1% and an apparent quantum yield of over 30% at 419 nm. The photocatalyst sheet design enables efficient and scalable water splitting using particulate semiconductors.

1,190 citations