scispace - formally typeset
Search or ask a question
Author

Suzliana Muhamad

Bio: Suzliana Muhamad is an academic researcher from Universiti Putra Malaysia. The author has contributed to research in topics: Nanoparticle & Thermal analysis. The author has an hindex of 2, co-authored 2 publications receiving 9 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, binary (ZnO)x(TiO2)1−x NPs were effectively blended by using thermal treatment technique, where Zinc nitrate and titanium(IV) propoxide with polyvinylpyrrolidone, PVP, were utilized to set up the samples.
Abstract: Numerous studies have explored the behaviors of ZnO–TiO2 nanoparticles resulting through various routes of fabrication. To date, the utilization of thermal treatment method to convey ZnO–TiO2 nanoparticles has never been considered. In the present study, binary (ZnO)x(TiO2)1−x NPs were effectively blended by using thermal treatment technique. Zinc nitrate and titanium(IV) propoxide with polyvinylpyrrolidone, PVP, were utilized to set up the samples. Energy-dispersive X-ray (EDX) spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction (XRD) spectroscopy, ultraviolet–visible (UV–Vis) spectrophotometer transmission electron microscopy (TEM) and photoluminescence spectroscopy were utilized to examine the impact of changing the molar proportion to the structure and optical features of (ZnO)x(TiO2)1−x NPs. The XRD spectra revealed that after calcination, the amorphous sample had transformed into crystalline nanoparticles. The prepared (ZnO)x(TiO2)1−x NPs average diameter was around 25.922–28.531 nm according to TEM analysis. The analyzation of UV–Vis spectroscopy determined the optical measurements parameters including the energy gap and Urbach energy of binary (ZnO)x(TiO2)1−x NPs. The optical energy gap varied in the range of 3.2496–3.2863 eV as the molar ratio increases from x = 0.24 to x = 0.72. The enhancement within the nanoparticles optical properties suggests a good potential for photocatalysis application.

9 citations

Journal ArticleDOI
TL;DR: In this article, binary oxide (zinc oxide (ZnO))0.2 (ZrO2)0.8 nanoparticles (NPs) at constant concentration of polyvinylpyrrolidone (PVP), calcined at various temperatures were prepared by heat treatment technique.
Abstract: What paved way to the innovation of this research work is the ability to investigate the constituents of nanomaterials, which consist of inorganic and organic nanoparticles and organic polymers, considered as a brand-new classification of materials. A unique material is produced through this process which contains organic and inorganic nanoparticles and organic polymers. These materials exhibit improved characteristics when compared with their respective nanoscale size. In the present study, binary oxide (zinc oxide (ZnO))0.2 (zirconia oxide (ZrO2))0.8 nanoparticles (NPs) at constant concentration of polyvinylpyrrolidone (PVP), calcined at various temperatures were prepared by heat treatment technique. Zinc and zirconium nitrates (source of zinc and zirconium) with PVP (capping agent) was used to set up (ZnO)0.2 (ZrO2)0.8 NPs materials. Characterization of the materials was performed using the following analyses: thermogravimetric analysis (TGA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and photoluminescence (PL). Thermal analysis (TGA) grants the optimization of the heat treatment technique and shows the required temperature for calcination to occur. XRD pattern analysis demonstrated that nanoparticles obtained after calcination indicated a hexagonal crystalline pattern of ZnO and tetragonal crystalline pattern of ZrO2 NPs. The FTIR spectroscopy phase analysis confirmed ZnO and ZrO2 are the original compounds of the prepared (ZnO)0.2 (ZrO2)0.8 NPs, respectively. TEM results indicated an increase in the average size of the sample from 21 to 29 nm due to increment in calcination temperature. Furthermore, PL spectra showed an increase in the intensity of PL as the particle size increased. The research work also looked at the optical application among the widespread applications of nanosized particles, binary oxide (ZnO)0.2 (ZrO2)0.8 as a new functional material.

4 citations


Cited by
More filters
04 Jun 2012
TL;DR: In this article, the formation of very thin graphene-like nanosheets of ZnO was confirmed from a photoluminescence study, which showed the presence of a narrow and sharp band edge emission at 360 nm and a weak defect related emission peak in the visible region.
Abstract: HerewereportalowcostelectrochemicalaqueoussolutionmethodforsynthesisofhighqualitytwodimensionalflatZnOnano-sheets using standard home use microwave-oven. Independent studies by field emission scanning electron microscopy and high resolution transmission electron microscopy confirm the formation of very thin graphene-like nanosheets of ZnO. The high quality of the sheets is confirmed from a photoluminescence study, which shows the presence of a narrow and sharp band edge emission at 360 nm and the presence of a weak defect related emission peak in the visible region. The conductivity of the nanosheets increases dramatically upon illumination of UV lights as compared to the dark condition. The better crystal quality and excellent photo conductivity ensure these ZnO nanosheets can be used as potential UV detector. It is also found that both response and recovery times of ZnO nano-sheets are very fast and are comparable to those of nanowires and nanorods.

19 citations

Journal ArticleDOI
TL;DR: In this paper, a thermal treatment approach based on a novel single-step has been used to address the synthesis of binary N i O 0.5 C r 2 O 3 0.
Abstract: In this research study, a thermal treatment approach based on a novel single-step has been utilised to addresses the synthesis of binary N i O 0.5 C r 2 O 3 0.5 nanoparticles. Characteristics of these binary metal oxide nanoparticles were examined by employing appropriate characterization tools. Sample patterns of X-ray diffractions were used, calcined with temperature ( Temp ), set to 500 °C revealed the existence of face-centred cubic (fcc) and hexagonal crystalline structures (hcs). It was noted that with a rising calcination temperature, the nanoparticle dispersal was enhanced further. On the other hand, TEM micrographs have been used to calculate the size of the mean particle. It was found that there was a rising tendency with the increased calcination temperature and this the growth of the mean particle. Increased particle size inherited a rise of nanoparticles' photoluminescence intensity, as suggested by recorded spectra, and various energy band gaps. This result would have been reduced as an effect once calcination temperature was increased. Resulting N i O 0.5 C r 2 O 3 0.5 nanoparticles could be used in the realm of semiconductors and energy applications.

15 citations

Journal ArticleDOI
TL;DR: In this paper, the authors synthesize the (Cr2O3)x (NiO)1-x nanoparticles at lower and higher precursor values using the calcination method using several techniques, including X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FT-IR).
Abstract: This study aims to synthesize the (Cr2O3)x (NiO)1-x nanoparticles at lower and higher precursor values using the calcination method. There is a lack in regard to investigating the lower and higher precursor values on structural and optical properties of the (Cr2O3)x (NiO)1-x nanoparticles. To synthesize the (Cr2O3)x (NiO)1-x nanoparticles, Cr (III) acetate hydrate and Ni (II) acetate tetrahydrate were reacted with poly (vinyl alcohol). Several techniques, including X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FT-IR), have been employed to characterize the synthesized sample. The XRD pattern analysis indicated that, following calcination, nanoparticle formation occurred, indicating hexagonal crystalline structures (HCP) and face-centred cubic (FCC) of (Cr2O3)x (NiO)1-x nanoparticles. FT-IR verified the existence of Ni–O and Cr–O as the original compounds of ready (Cr2O3)x (NiO)1-x nanoparticle samples. In term of average particle size, this varied from 5 to 16 nm when the precursor concentration rised from x = 0.20 to x = 0.80, as reflected in the TEM results. X-ray photoelectron spectroscopy (XPS) was employed to measure the valence state and surface composition of the prepared product nanoparticles. To identify the optical band gap using the Kubelka–Munk equation, diffuse UV–visible reflectance spectra were employed, which revealed that the energy band gap fell with a rise in the value of x. In addition, photoluminescence (PL) spectra indicated that the photoluminescence intensity was related to a directly proportional way to particle size. Hence, the results can be employed with a broad range of applications in solar cell energy applications at higher x values and antibacterial activity at lower x values.

10 citations

Journal ArticleDOI
TL;DR: In this article, zinc titanates (ZTO) were synthesized, characterized, and evaluated aiming to study their photocatalytic properties for hydrogen production under visible-light irradiation and employing MeOH (methanol) and TEOA (Triethanolamine) as sacrificial agents.
Abstract: In the present work, zinc titanates (ZTO) as photocatalysts were synthesized, characterized, and evaluated aiming to study their photocatalytic properties for hydrogen production under visible-light irradiation and employing MeOH (methanol) and TEOA (Triethanolamine) as sacrificial agents. ZTO were synthesized by modified Pechini method. Characterization of materials consisted in TGA, XRD, TEM, EELS, BET, and UV–Vis. Surface interaction studies consisted of FT-IR spectroscopy and determination of MeOH and TEOA adsorption–desorption capacities on the ZTO by TGA. Zinc titanates were evaluated as photocatalyst for H2 production using an artificial visible light and monitored by GC. TGA results led to establish calcination temperatures of 550 °C (Zn2Ti3O8) and 700 °C (ZnTiO3) to reach their crystalline phases. XRD analysis of sample cds-ZTO found cubic Zn2Ti3O8 and traces of the ZnO crystalline phase, while p-ZTO exhibited a mixture of cubic and hexagonal ZnTiO3 crystalline phases. Surface area for cds-ZTO was 88 m2/g, while ZnTiO3 had 13 m2/g. Photocatalytic H2 production for cds-ZTO and p-ZTO using TEOA as sacrificial agent showed the highest photocatalytic activities generating 548 and 441 µmolH2/h.gcat. TEOA adsorption–desorption capacity was found superior on cds-ZTO and p-ZTO than that for MeOH on both samples.

7 citations

Journal ArticleDOI
TL;DR: In this paper, the structural, morphological, and optical properties of NiO nanoparticles were investigated at different calcined temperatures, and the results approved the successful formation of binary NiO 0.4 (Ag2O)0.6 nanoparticles by a novel facile synthesis route.
Abstract: Many studies have concentrated on exploring behaviors of nickel silver oxide nanoparticles using various routes of fabrication. Thermal treatment technique has never been utilized to fabricate nickel oxide silver oxide nanoparticles. In this research, binary (NiO)0.4 (Ag2O)0.6 nanoparticles were synthesized using the thermal treatment method due to its attractive advantages such as low cost, eco-friendly, and purity of nanoparticles. The structural, morphological, and optical behaviors of these nanoparticles were investigated at different calcined temperatures. X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), ultraviolet–visible spectroscopy (UV–Vis), and photoluminescence (PL) were the techniques used to characterize the synthesized nanoparticles. XRD was conducted at different calcined temperatures. The crystallite size was increased from 25.4 nm to 37.0 nm as the calcined temperature increased from 500 °C to 800 °C. Also, TEM results verified that the mean particle size was enlarged as the calcined temperatures increased. Two band gaps were found for each temperature, which were decreased from (3.05, 2.45) to (2.70, 1.95) eV as the temperature varied from 500 to 800 °C, respectively. Broadbands were observed by PL spectra, and the intensity of two emission peaks was also increased at higher temperatures. The results approved the successful formation of binary (NiO)0.4 (Ag2O)0.6 nanoparticles by a novel facile synthesis route. These nanoparticles are likely to have various applications, especially optical applications due to the formation of two band gaps.

5 citations