scispace - formally typeset
Search or ask a question
Author

Sven-Erik Gryning

Bio: Sven-Erik Gryning is an academic researcher from Technical University of Denmark. The author has contributed to research in topics: Wind profile power law & Planetary boundary layer. The author has an hindex of 33, co-authored 76 publications receiving 4213 citations. Previous affiliations of Sven-Erik Gryning include United States Department of Energy.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present a review of the literature on the analysis of profile measurements and the use of parameterisations and simple models, and suggest for the preprocessor development and for future research activities.

898 citations

Journal ArticleDOI
TL;DR: In this paper, a method for calculating the dispersion of plumes in the atmospheric boundary layer is presented, where the inputs to the method are fundamental meteorological parameters, which act as distinct scaling parameters for the turbulence.

316 citations

Journal ArticleDOI
TL;DR: In this paper, an extension to the wind profile in the surface layer is formulated for the entire boundary layer, with emphasis on the lowest 200-300 m and considering only wind speeds above 3 m s−1 at 10 m height.
Abstract: Analysis of profiles of meteorological measurements from a 160 m high mast at the National Test Site for wind turbines at Hovsore (Denmark) and at a 250 m high TV tower at Hamburg (Germany) shows that the wind profile based on surface-layer theory and Monin-Obukhov scaling is valid up to a height of 50–80 m. At higher levels deviations from the measurements progressively occur. For applied use an extension to the wind profile in the surface layer is formulated for the entire boundary layer, with emphasis on the lowest 200–300 m and considering only wind speeds above 3 m s−1 at 10 m height. The friction velocity is taken to decrease linearly through the boundary layer. The wind profile length scale is composed of three component length scales. In the surface layer the first length scale is taken to increase linearly with height with a stability correction following Monin-Obukhov similarity. Above the surface layer the second length scale (L MBL ) becomes independent of height but not of stability, and at the top of the boundary layer the third length scale is assumed to be negligible. A simple model for the combined length scale that controls the wind profile and its stability dependence is formulated by inverse summation. Based on these assumptions the wind profile for the entire boundary layer is derived. A parameterization of L MBL is formulated using the geostrophic drag law, which relates friction velocity and geostrophic wind. The empirical parameterization of the resistance law functions A and B in the geostrophic drag law is uncertain, making it impractical. Therefore an expression for the length scale, L MBL , for applied use is suggested, based on measurements from the two sites.

310 citations

Journal ArticleDOI
TL;DR: In this article, the tracer sulphurhexafluoride was released without buoyancy from a tower at a height of 115 m and then collected at ground-level positions in up to three crosswind series of tracer sampling units, positioned 2-6 km from the point of release.
Abstract: Atmospheric dispersion experiments were carried out in the Copenhagen area under neutral and unstable conditions. The tracer sulphurhexafluoride was released without buoyancy from a tower at a height of 115 m and then collected at ground-level positions in up to three crosswind series of tracer sampling units, positioned 2–6 km from the point of release. The site was mainly residential having a roughness length of 0.6 m. The meteorological measurements performed during the experiments included the three-dimensional wind velocity fluctuations at the height of release. Dispersion parameters estimated from the measured tracer concentrations were compared with dispersion parameters calculated by various standard methods. These included methods based on the measured wind variances at the experiments and methods based on a stability classification of the atmospheric conditions. The wind variance-based methods are seen to be better than the stability-based methods in predicting the variation of σy. In a...

208 citations

Journal ArticleDOI
TL;DR: In this paper, a slab model is proposed for developing the height of the mixed layer capped by stable air aloft, which is closed by relating the consumption of energy (potential and kinetic) at the top of a mixed layer to the production of convective and mechanical turbulent kinetic energy within the mixed layers.
Abstract: A slab model is proposed for developing the height of the mixed layer capped by stable air aloft. The model equations are closed by relating the consumption of energy (potential and kinetic) at the top of the mixed layer to the production of convective and mechanical turbulent kinetic energy within the mixed layer. By assuming that the temperature difference at the top of the mixed layer instantaneously adjusts to the actual meteorological conditions without regard to the initial temperature difference that prevailed, the model is reduced to a single differential equation which easily can be solved numerically. When the mixed layer is shallow or the atmosphere nearly neutrally stratified, the growth is controlled mainly by mechanical turbulence. When the layer is deep, its growth is controlled mainly by convective turbulence. The model is applied on a data set of the evolution of the height of the mixed layer in the morning hours, when both mechanical and convective turbulence contribute to the growth process. Realistic mixed-layer developments are obtained.

192 citations


Cited by
More filters
01 Jan 1989
TL;DR: In this article, a two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea.
Abstract: Abstract A two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea. The domain includes a representation of part of Borneo as well as the sea so that the model can simulate the initiation of convection. Also included in the model are parameterizations of mesoscale ice phase and moisture processes and longwave and shortwave radiation with a diurnal cycle. This allows use of the model to test the relative importance of various heating mechanisms to the stratiform cloud deck, which typically occupies several hundred kilometers of the domain. Frank and Cohen's cumulus parameterization scheme is employed to represent vital unresolved vertical transports in the convective area. The major conclusions are: Ice phase processes are important in determining the level of maximum large-scale heating and vertical motion because there is a strong anvil componen...

3,813 citations

Journal ArticleDOI
TL;DR: The FLUXNET project as mentioned in this paper is a global network of micrometeorological flux measurement sites that measure the exchanges of carbon dioxide, water vapor, and energy between the biosphere and atmosphere.
Abstract: FLUXNET is a global network of micrometeorological flux measurement sites that measure the exchanges of carbon dioxide, water vapor, and energy between the biosphere and atmosphere. At present over 140 sites are operating on a long-term and continuous basis. Vegetation under study includes temperate conifer and broadleaved (deciduous and evergreen) forests, tropical and boreal forests, crops, grasslands, chaparral, wetlands, and tundra. Sites exist on five continents and their latitudinal distribution ranges from 70°N to 30°S. FLUXNET has several primary functions. First, it provides infrastructure for compiling, archiving, and distributing carbon, water, and energy flux measurement, and meteorological, plant, and soil data to the science community. (Data and site information are available online at the FLUXNET Web site, http://www-eosdis.ornl.gov/FLUXNET/.) Second, the project supports calibration and flux intercomparison activities. This activity ensures that data from the regional networks are intercomparable. And third, FLUXNET supports the synthesis, discussion, and communication of ideas and data by supporting project scientists, workshops, and visiting scientists. The overarching goal is to provide information for validating computations of net primary productivity, evaporation, and energy absorption that are being generated by sensors mounted on the NASA Terra satellite. Data being compiled by FLUXNET are being used to quantify and compare magnitudes and dynamics of annual ecosystem carbon and water balances, to quantify the response of stand-scale carbon dioxide and water vapor flux densities to controlling biotic and abiotic factors, and to validate a hierarchy of soil–plant–atmosphere trace gas exchange models. Findings so far include 1) net CO 2 exchange of temperate broadleaved forests increases by about 5.7 g C m −2 day −1 for each additional day that the growing season is extended; 2) the sensitivity of net ecosystem CO 2 exchange to sunlight doubles if the sky is cloudy rather than clear; 3) the spectrum of CO 2 flux density exhibits peaks at timescales of days, weeks, and years, and a spectral gap exists at the month timescale; 4) the optimal temperature of net CO 2 exchange varies with mean summer temperature; and 5) stand age affects carbon dioxide and water vapor flux densities.

3,162 citations

Journal ArticleDOI
TL;DR: A modeling study using hourly meteorological and pollution concentration data from across the coterminous United States demonstrates that urban trees remove large amounts of air pollution that consequently improve urban air quality.

1,865 citations

Journal ArticleDOI
TL;DR: The assessment was completed by the Intergovernmental Panel on Climate Change (IPCC) with a primary aim of reviewing the current state of knowledge concerning the impacts of climate change on physical and ecological systems, human health, and socioeconomic factors as mentioned in this paper.
Abstract: Climate Change 1995 is a scientific assessment that was generated by more than 1 000 contributors from over 50 nations. It was jointly co-ordinated through two international agencies; the World Meteorological Organization and the United Nations Environment Programme. The assessment was completed by the Intergovernmental Panel on Climate Change (IPCC) with a primary aim of reviewing the current state of knowledge concerning the impacts of climate change on physical and ecological systems, human health, and socioeconomic factors. The second aim was to review the available information on the technical and economic feasibility of the potential mitigation and adaptation strategies.

1,149 citations