scispace - formally typeset
Search or ask a question
Author

Sven Koenig

Bio: Sven Koenig is an academic researcher from University of Southern California. The author has contributed to research in topics: Incremental heuristic search & Computer science. The author has an hindex of 49, co-authored 134 publications receiving 9301 citations. Previous affiliations of Sven Koenig include Carnegie Mellon University & Georgia Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: Although ridesharing can provide a wealth of benefits, such as reduced travel costs, congestion, and consequently less pollution, there are a number of challenges that have restricted its widespread adoption.
Abstract: Although ridesharing can provide a wealth of benefits, such as reduced travel costs, congestion, and consequently less pollution, there are a number of challenges that have restricted its widespread adoption. In fact, even at a time when improving communication systems provide real-time detailed information that could be used to facilitate ridesharing, the share of work trips that use ridesharing has decreased by almost 10% in the past 30 years. In this paper we present a classification to understand the key aspects of existing ridesharing systems. The objective is to present a framework that can help identify key challenges in the widespread use of ridesharing and thus foster the development of effective formal ridesharing mechanisms that would overcome these challenges and promote massification.

747 citations

Journal ArticleDOI
TL;DR: D/sup */ Lite is introduced, a heuristic search method that determines the same paths and thus moves the robot in the same way but is algorithmically different, and is at least as efficient as D/Sup */.
Abstract: Mobile robots often operate in domains that are only incompletely known, for example, when they have to move from given start coordinates to given goal coordinates in unknown terrain. In this case, they need to be able to replan quickly as their knowledge of the terrain changes. Stentz' Focussed Dynamic A/sup */ (D/sup */) is a heuristic search method that repeatedly determines a shortest path from the current robot coordinates to the goal coordinates while the robot moves along the path. It is able to replan faster than planning from scratch since it modifies its previous search results locally. Consequently, it has been extensively used in mobile robotics. In this article, we introduce an alternative to D/sup */ that determines the same paths and thus moves the robot in the same way but is algorithmically different. D/sup */ Lite is simple, can be rigorously analyzed, extendible in multiple ways, and is at least as efficient as D/sup */. We believe that our results will make D/sup */-like replanning methods even more popular and enable robotics researchers to adapt them to additional applications.

601 citations

Journal ArticleDOI
TL;DR: LPA* is developed, an incremental version of A* that combines ideas from the artificial intelligence and the algorithms literature and repeatedly finds shortest paths from a given start vertex to a given goal vertex while the edge costs of a graph change or vertices are added or deleted.

584 citations

Proceedings ArticleDOI

[...]

28 Jul 2002
TL;DR: This paper applies Lifelong Planning A* to robot navigation inunknown terrain, including goal-directed navigation in unknown terrain and mapping of unknown terrain, and develops the resulting D* Lite algorithm, which implements the same behavior as Stentz' Focussed Dynamic A* but is algorithmically different.
Abstract: Incremental heuristic search methods use heuristics to focus their search and reuse information from previous searches to find solutions to series of similar search tasks much faster than is possible by solving each search task from scratch. In this paper, we apply Lifelong Planning A* to robot navigation in unknown terrain, including goal-directed navigation in unknown terrain and mapping of unknown terrain. The resulting D* Lite algorithm is easy to understand and analyze. It implements the same behavior as Stentz' Focussed Dynamic A* but is algorithmically different. We prove properties about D* Lite and demonstrate experimentally the advantages of combining incremental and heuristic search for the applications studied. We believe that these results provide a strong foundation for further research on fast replanning methods in artificial intelligence and robotics.

576 citations

Proceedings Article
20 Aug 1995
TL;DR: First results are reported on first results of a research program that uses par tially observable Markov models to robustly track a robots location in office environments and to direct its goal-oriented actions.
Abstract: Autonomous mobile robots need very reliable navigation capabilities in order to operate unattended for long periods of time. This paper reports on first results of a research program that uses par tially observable Markov models to robustly track a robots location in office environments and to direct its goal-oriented actions. The approach explicitly maintains a probability distribution over the possible locations of the robot taking into account various sources of uncertainly including approximate knowledge of the environment and actuator and sensor uncertainty. A novel feature of our approach is its integration of topological map information with approximate metric information. We demonstrate the robustness of this approach in controlling an actual indoor mobile robot navigating corridors.

572 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: Central issues of reinforcement learning are discussed, including trading off exploration and exploitation, establishing the foundations of the field via Markov decision theory, learning from delayed reinforcement, constructing empirical models to accelerate learning, making use of generalization and hierarchy, and coping with hidden state.
Abstract: This paper surveys the field of reinforcement learning from a computer-science perspective. It is written to be accessible to researchers familiar with machine learning. Both the historical basis of the field and a broad selection of current work are summarized. Reinforcement learning is the problem faced by an agent that learns behavior through trial-and-error interactions with a dynamic environment. The work described here has a resemblance to work in psychology, but differs considerably in the details and in the use of the word "reinforcement." The paper discusses central issues of reinforcement learning, including trading off exploration and exploitation, establishing the foundations of the field via Markov decision theory, learning from delayed reinforcement, constructing empirical models to accelerate learning, making use of generalization and hierarchy, and coping with hidden state. It concludes with a survey of some implemented systems and an assessment of the practical utility of current methods for reinforcement learning.

6,895 citations

BookDOI
01 Jan 2001
TL;DR: This book presents the first comprehensive treatment of Monte Carlo techniques, including convergence results and applications to tracking, guidance, automated target recognition, aircraft navigation, robot navigation, econometrics, financial modeling, neural networks, optimal control, optimal filtering, communications, reinforcement learning, signal enhancement, model averaging and selection.
Abstract: Monte Carlo methods are revolutionizing the on-line analysis of data in fields as diverse as financial modeling, target tracking and computer vision. These methods, appearing under the names of bootstrap filters, condensation, optimal Monte Carlo filters, particle filters and survival of the fittest, have made it possible to solve numerically many complex, non-standard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques, including convergence results and applications to tracking, guidance, automated target recognition, aircraft navigation, robot navigation, econometrics, financial modeling, neural networks, optimal control, optimal filtering, communications, reinforcement learning, signal enhancement, model averaging and selection, computer vision, semiconductor design, population biology, dynamic Bayesian networks, and time series analysis. This will be of great value to students, researchers and practitioners, who have some basic knowledge of probability. Arnaud Doucet received the Ph. D. degree from the University of Paris-XI Orsay in 1997. From 1998 to 2000, he conducted research at the Signal Processing Group of Cambridge University, UK. He is currently an assistant professor at the Department of Electrical Engineering of Melbourne University, Australia. His research interests include Bayesian statistics, dynamic models and Monte Carlo methods. Nando de Freitas obtained a Ph.D. degree in information engineering from Cambridge University in 1999. He is presently a research associate with the artificial intelligence group of the University of California at Berkeley. His main research interests are in Bayesian statistics and the application of on-line and batch Monte Carlo methods to machine learning. Neil Gordon obtained a Ph.D. in Statistics from Imperial College, University of London in 1993. He is with the Pattern and Information Processing group at the Defence Evaluation and Research Agency in the United Kingdom. His research interests are in time series, statistical data analysis, and pattern recognition with a particular emphasis on target tracking and missile guidance.

6,574 citations

MonographDOI
01 Jan 2006
TL;DR: This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms, into planning under differential constraints that arise when automating the motions of virtually any mechanical system.
Abstract: Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms. The treatment is centered on robot motion planning but integrates material on planning in discrete spaces. A major part of the book is devoted to planning under uncertainty, including decision theory, Markov decision processes, and information spaces, which are the “configuration spaces” of all sensor-based planning problems. The last part of the book delves into planning under differential constraints that arise when automating the motions of virtually any mechanical system. Developed from courses taught by the author, the book is intended for students, engineers, and researchers in robotics, artificial intelligence, and control theory as well as computer graphics, algorithms, and computational biology.

6,340 citations

Posted Content
TL;DR: A survey of reinforcement learning from a computer science perspective can be found in this article, where the authors discuss the central issues of RL, including trading off exploration and exploitation, establishing the foundations of RL via Markov decision theory, learning from delayed reinforcement, constructing empirical models to accelerate learning, making use of generalization and hierarchy, and coping with hidden state.
Abstract: This paper surveys the field of reinforcement learning from a computer-science perspective. It is written to be accessible to researchers familiar with machine learning. Both the historical basis of the field and a broad selection of current work are summarized. Reinforcement learning is the problem faced by an agent that learns behavior through trial-and-error interactions with a dynamic environment. The work described here has a resemblance to work in psychology, but differs considerably in the details and in the use of the word ``reinforcement.'' The paper discusses central issues of reinforcement learning, including trading off exploration and exploitation, establishing the foundations of the field via Markov decision theory, learning from delayed reinforcement, constructing empirical models to accelerate learning, making use of generalization and hierarchy, and coping with hidden state. It concludes with a survey of some implemented systems and an assessment of the practical utility of current methods for reinforcement learning.

5,970 citations