scispace - formally typeset
Search or ask a question
Author

Swarup Roy

Bio: Swarup Roy is an academic researcher from Kyung Hee University. The author has contributed to research in topics: Nanocomposite & Silver nanoparticle. The author has an hindex of 24, co-authored 86 publications receiving 1503 citations. Previous affiliations of Swarup Roy include Inha University & Kalyani Government Engineering College.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: The CMC/curcumin/ZnO composite films showed significantly increased UV-barrier without much sacrifice of transparency, and they also showed increased water vapor barrier properties.

235 citations

Journal ArticleDOI
TL;DR: This review highlights the potential and challenges for the use of anthocyanins as pH-responsive color-changing films for intelligent food packaging applications, which may be beneficial for further development of smart color indicator films for practical use.
Abstract: Recently, interest in smart packaging, which can show the color change of the packaging film according to the state of the food and evaluate the quality or freshness of the packaged food in real-time, is increasing. As a color indicator, a natural colorant, anthocyanin, drew a lot of attention due to their various colors as well as useful functions properties such as antioxidant activity and anti-carcinogenic and anti-inflammatory effects, prevention of cardiovascular disease, obesity, and diabetes. In particular, the pH-responsive color-changing function of anthocyanins is useful for making color indicator smart packaging films. This review addressed the latest information on the use of natural pigment anthocyanins for intelligent and active food packaging applications. Recent studies on eco-friendly biodegradable polymer-based color indicator films incorporated with anthocyanins have been addressed. Also, studies on the use of smart packaging films to monitor the freshness of foods such as milk, meat, and fish were reviewed. This review highlights the potential and challenges for the use of anthocyanins as pH-responsive color-changing films for intelligent food packaging applications, which may be beneficial for further development of smart color indicator films for practical use.

211 citations

Journal ArticleDOI
TL;DR: In this paper, a green method using melanin (Mel) as a reducing and capping agent and incorporated to carrageenan (Carr) to prepare antimicrobial nanocomposite films.

165 citations

Journal ArticleDOI
TL;DR: Antibacterial and antioxidant gelatin/curcumin composite films with improved UV protection, water vapor barrier and mechanical properties have high potential in active food packaging applications.

159 citations

Journal ArticleDOI
TL;DR: In this paper, the curcumin-incorporated carbohydrate films with increased physical and functional properties can be used for active food packaging films, and the composite films exhibited high antioxidant activity and some antibacterial property depending on the type of carbohydrate.

139 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Their added-value in the development of alternative, more effective antibiotics against multi-resistant Gram-negative bacteria has been highlighted and their production methods, physicochemical characterization, and pharmacokinetics are reviewed.
Abstract: Metal-based nanoparticles have been extensively investigated for a set of biomedical applications. According to the World Health Organization, in addition to their reduced size and selectivity for bacteria, metal-based nanoparticles have also proved to be effective against pathogens listed as a priority. Metal-based nanoparticles are known to have non-specific bacterial toxicity mechanisms (they do not bind to a specific receptor in the bacterial cell) which not only makes the development of resistance by bacteria difficult, but also broadens the spectrum of antibacterial activity. As a result, a large majority of metal-based nanoparticles efficacy studies performed so far have shown promising results in both Gram-positive and Gram-negative bacteria. The aim of this review has been a comprehensive discussion of the state of the art on the use of the most relevant types of metal nanoparticles employed as antimicrobial agents. A special emphasis to silver nanoparticles is given, while others (e.g., gold, zinc oxide, copper, and copper oxide nanoparticles) commonly used in antibiotherapy are also reviewed. The novelty of this review relies on the comparative discussion of the different types of metal nanoparticles, their production methods, physicochemical characterization, and pharmacokinetics together with the toxicological risk encountered with the use of different types of nanoparticles as antimicrobial agents. Their added-value in the development of alternative, more effective antibiotics against multi-resistant Gram-negative bacteria has been highlighted.

629 citations

Journal Article
TL;DR: In this paper, the antioxidant activity of the rutin (quercetin-3-rhamnosyl glucoside) using different assays including: total antioxidant activity and reducing power, hydroxyl radical scavenging assay, superoxide radical scavengence assay, 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavengent assay and lipid peroxidation assay which uses egg yolk as the lipid-rich source.
Abstract: Much work has been carried out in recent years on the beneficial effect of phenolic compounds which act as natural antioxidants and help to neutralize free radicals. We analysed the antioxidant activity of the rutin (quercetin-3-rhamnosyl glucoside) using different assays including: total antioxidant activity and reducing power, hydroxyl radical scavenging assay, superoxide radical scavenging assay, 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging assay and lipid peroxidation assay which uses egg yolk as the lipid-rich source. Total antioxidant capacity was determined by the assay based on the decrease in absorbance of β-carotene by the sample. Rutin exhibited strong DPPH radical scavenging activity. At the concentration of 0.05 mg/ml, ascorbic acid (Vc), butylated hydroxytoluene (BHT) and rutin showed 92.8%, 58.8%, and 90.4% inhibition, respectively. In addition, rutin had effective inhibition of lipid peroxidation. Those various antioxidant activities were compared to standard antioxidants such as BHT and Vc.

459 citations

Journal ArticleDOI
TL;DR: This review aims to discuss AgNPs applied in biomedicine and as promising field for insertion and development of new compounds related to medical and pharmacy technology and addresses drug delivery, toxicity issues, and the safety rules concerning biomedical applications of silver nanoparticles.

376 citations

Journal ArticleDOI
TL;DR: Chitosan is the structural material of crustaceans, insects, and fungi, and is the second most abundant biopolymer after cellulose on earth as mentioned in this paper, which can be obtained by deacetylation of chitin.
Abstract: Chitin is the structural material of crustaceans, insects, and fungi, and is the second most abundant biopolymer after cellulose on earth. Chitosan, a deacetylated derivative of chitin, can be obtained by deacetylation of chitin. It is a functionally versatile biopolymer due to the presence of amino groups responsible for the various properties of the polymer. Although it has been used for various industrial applications, the recent one is its use as a biodegradable antimicrobial food packaging material. Much research has been focused on chitosan-based flexible food packaging and edible food coatings to compete with conventional non-biodegradable plastic-based food packaging materials. Various strategies have been used to improve the properties of chitosan - using plasticizers and cross-linkers, embedding the polymer with fillers such as nanoparticles, fibers, and whiskers, and blending the polymer with natural extracts and essential oils and also with other natural and synthetic polymers. However, much research is still needed to bring this biopolymer to industrial levels for the food packaging applications. Industrial relevance As a major by-product of the seafood industry, a massive amount of crustacean shell waste is generated each year, which can be used to produce value-added chitin, which can be converted to chitosan using a relatively simple deacetylation process. Being extracted from a bio-waste product using many energy-efficient methods, chitosan is much cheaper as compared to other biopolymers. Nevertheless, the exceptional properties of chitosan make it a relatively stronger candidate for food packaging applications. Chitosan has already been used in various industries, such as biomedical, agriculture, water treatment, cosmetics, textile, photography, chromatography, electronics, paper industry, and food industry. This review article compiles all the essential literature up to the latest developments of chitosan as a potential food packaging material and the outcomes of its practical utilization for this purpose.

268 citations

Journal ArticleDOI
TL;DR: Biological silver nanoparticle was synthesized extracellularly by using the fungus, Trichoderma longibrachiatum, where the cell filtrate of the fungus was used as a reducing and stabilizing agent in the process of nanoparticle synthesis, leading to significant reductions in the number of forming colonies for many plant pathogenic fungi.
Abstract: An efficient biosynthesis process for the rapid production of nanoparticles would enable the development of a “microbial nanotechnology” for mass-scale production. In the present research, biological silver nanoparticle was synthesized extracellularly by using the fungus, Trichoderma longibrachiatum, where the cell filtrate of the fungus was used as a reducing and stabilizing agent in the process of nanoparticle synthesis. Different physical parameters such as fungal biomass concentration (1, 5, 10, 15, and 20 g), temperature (25, 28, and 33 °C), incubation time (0–120 h), and agitation (shaken or not shaken) were investigated, in order to determine the optimal conditions for nanoparticle biosynthesis. The stability and antifungal properties of the synthesized silver nanoparticles (AgNPs) were also determined. Data revealed that a combination of 10 g fungal biomass, a reaction temperature of 28 °C, a 72-h incubation time, and without shaking were the optimum conditions for the synthesis of the silver nanoparticles. Visual observation of brown color is an indication of silver nanoparticle production. UV–vis spectroscopy showed maximum absorption at 385 nm with the optimum conditions. Transmission electron microscopy (TEM) revealed the formation of monodispersed spherical shape with a mean diameter of 10 nm. Fourier transformation infrared (FTIR) showed bands at1634.92 and 3269.31 cm−1. Dynamic light scattering (DLS) supported that the Z-average size was 24.43 and 0.420 PdI value. Zeta potential showed − 19.7 mV with a single peak. The AgNPs synthesized through this biosystem approach were relatively stable up to 2 months after synthesis. The use of AgNPs as antifungal led to significant reductions in the number of forming colonies for many plant pathogenic fungi, with efficiencies reaching up to 90% against Fusarium verticillioides, Fusarium moniliforme, Penicillium brevicompactum, Helminthosporium oryzae, and Pyricularia grisea. However, further research should be carried out in order to determine the toxic effect of AgNPs before mass production and use of agricultural applications.

261 citations