scispace - formally typeset
Search or ask a question
Author

Syed H. Masood

Other affiliations: Industrial Research Institute
Bio: Syed H. Masood is an academic researcher from Swinburne University of Technology. The author has contributed to research in topics: Tool steel & Selective laser melting. The author has an hindex of 37, co-authored 265 publications receiving 6557 citations. Previous affiliations of Syed H. Masood include Industrial Research Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: A review of the research carried out so far in determining and optimizing the process parameters of the FDM process can be found in this paper, where several statistical designs of experiments and optimization techniques used for the determination of optimum process parameters have been examined.
Abstract: Fused deposition modeling (FDM) is one of the most popular additive manufacturing technologies for various engineering applications. FDM process has been introduced commercially in early 1990s by Stratasys Inc., USA. The quality of FDM processed parts mainly depends on careful selection of process variables. Thus, identification of the FDM process parameters that significantly affect the quality of FDM processed parts is important. In recent years, researchers have explored a number of ways to improve the mechanical properties and part quality using various experimental design techniques and concepts. This article aims to review the research carried out so far in determining and optimizing the process parameters of the FDM process. Several statistical designs of experiments and optimization techniques used for the determination of optimum process parameters have been examined. The trends for future FDM research in this area are described.

925 citations

Journal ArticleDOI
TL;DR: In this article, a new metal/polymer composite material for use in fused deposition modelling (FDM) process with the aim of application to direct rapid tooling is presented. But the material consists of iron particles in a nylon type matrix.

461 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the thermal and mechanical properties of new metal-particle filled Acrylonitrile Butadiene Styrene (ABS) composites for applications in Fused Deposition Modeling rapid prototyping process.

432 citations

Journal ArticleDOI
TL;DR: In this paper, current metallurgical processes for the extraction of metals from e-waste, including existing industrial routes, are reviewed, and challenges such as collection, transportation, liberation of metal fractions, and installation of integrated smelting and refining facilities are identified.
Abstract: The useful life of electrical and electronic equipment (EEE) has been shortened as a consequence of the advancement in technology and change in consumer patterns. This has resulted in the generation of large quantities of electronic waste (e-waste) that needs to be managed. The handling of e-waste including combustion in incinerators, disposing in landfill or exporting overseas is no longer permitted due to environmental pollution and global legislations. Additionally, the presence of precious metals (PMs) makes e-waste recycling attractive economically. In this paper, current metallurgical processes for the extraction of metals from e-waste, including existing industrial routes, are reviewed. In the first part of this paper, the definition, composition and classifications of e-wastes are described. In the second part, separation of metals from e-waste using mechanical processing, hydrometallurgical and pyrometallurgical routes are critically analyzed. Pyrometallurgical routes are comparatively economical and eco-efficient if the hazardous emissions are controlled. Currently, pyrometallurgical routes are used initially for the segregation and upgrading of PMs (gold and silver) into base metals (BMs) (copper, lead and nickel) and followed by hydrometallurgical and electrometallurgical processing for the recovery of pure base and PMs. For the recycling of e-waste in Australia, challenges such as collection, transportation, liberation of metal fractions, and installation of integrated smelting and refining facilities are identified.

351 citations

Journal ArticleDOI
TL;DR: In this paper, experimental compression tests and finite element analysis were conducted to investigate and compare the mechanical properties and energy absorption capability of functionally graded and uniform F2BCC lattice structures made of Al-12Si aluminium alloy and manufactured by SLM process.

291 citations


Cited by
More filters
Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Journal ArticleDOI
TL;DR: A review of the emerging research on additive manufacturing of metallic materials is provided in this article, which provides a comprehensive overview of the physical processes and the underlying science of metallurgical structure and properties of the deposited parts.

4,192 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the main 3D printing methods, materials and their development in trending applications was carried out in this paper, where the revolutionary applications of AM in biomedical, aerospace, buildings and protective structures were discussed.
Abstract: Freedom of design, mass customisation, waste minimisation and the ability to manufacture complex structures, as well as fast prototyping, are the main benefits of additive manufacturing (AM) or 3D printing. A comprehensive review of the main 3D printing methods, materials and their development in trending applications was carried out. In particular, the revolutionary applications of AM in biomedical, aerospace, buildings and protective structures were discussed. The current state of materials development, including metal alloys, polymer composites, ceramics and concrete, was presented. In addition, this paper discussed the main processing challenges with void formation, anisotropic behaviour, the limitation of computer design and layer-by-layer appearance. Overall, this paper gives an overview of 3D printing, including a survey on its benefits and drawbacks as a benchmark for future research and development.

4,159 citations

Journal ArticleDOI
TL;DR: Polymers are by far the most utilized class of materials for AM and their design, additives, and processing parameters as they relate to enhancing build speed and improving accuracy, functionality, surface finish, stability, mechanical properties, and porosity are addressed.
Abstract: Additive manufacturing (AM) alias 3D printing translates computer-aided design (CAD) virtual 3D models into physical objects. By digital slicing of CAD, 3D scan, or tomography data, AM builds objects layer by layer without the need for molds or machining. AM enables decentralized fabrication of customized objects on demand by exploiting digital information storage and retrieval via the Internet. The ongoing transition from rapid prototyping to rapid manufacturing prompts new challenges for mechanical engineers and materials scientists alike. Because polymers are by far the most utilized class of materials for AM, this Review focuses on polymer processing and the development of polymers and advanced polymer systems specifically for AM. AM techniques covered include vat photopolymerization (stereolithography), powder bed fusion (SLS), material and binder jetting (inkjet and aerosol 3D printing), sheet lamination (LOM), extrusion (FDM, 3D dispensing, 3D fiber deposition, and 3D plotting), and 3D bioprinting....

2,136 citations

Journal ArticleDOI
TL;DR: In this paper, the authors give an overview on 3D printing techniques of polymer composite materials and the properties and performance of 3D printed composite parts as well as their potential applications in the fields of biomedical, electronics and aerospace engineering.
Abstract: The use of 3D printing for rapid tooling and manufacturing has promised to produce components with complex geometries according to computer designs. Due to the intrinsically limited mechanical properties and functionalities of printed pure polymer parts, there is a critical need to develop printable polymer composites with high performance. 3D printing offers many advantages in the fabrication of composites, including high precision, cost effective and customized geometry. This article gives an overview on 3D printing techniques of polymer composite materials and the properties and performance of 3D printed composite parts as well as their potential applications in the fields of biomedical, electronics and aerospace engineering. Common 3D printing techniques such as fused deposition modeling, selective laser sintering, inkjet 3D printing, stereolithography, and 3D plotting are introduced. The formation methodology and the performance of particle-, fiber- and nanomaterial-reinforced polymer composites are emphasized. Finally, important limitations are identified to motivate the future research of 3D printing.

2,132 citations